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Figure 1: DeepCompare enables users to systematically compare results of two models in order to understand the differences
and tradeoffs between them. Here, we compare a Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM)
model performing sentiment classification on movie reviews. The CNN and LSTM have similar accuracy scores (76.3% and 76.5%
respectively) but have very different qualitative behavior. The Neuron Weights Detail panel (a) visualizes the weights and feature
values of one model layer as a heatmap (red = lower, green = higher). The user has selected Neuron 49 from the LSTM, and its
Neuron Activation Distribution panel (b) indicates a sparse distribution from -1 to 1 with most test instances remaining inactive. The
Test Result Detail panel (c) lists a detailed view of the results sorted by the selected neuron’s activation values and filtered by their
results. To get a high-level view of all the results, we can refer to the Test Results Summary panel (d) and see that for both classes,
both models get the same proportion of predictions correct, but the CNN performs slightly better on negative reviews while the LSTM
performs better on positive reviews.

ABSTRACT

Deep learning models have become the state-of-art for many tasks,
from text sentiment analysis to facial image recognition. However,
understanding why certain models perform better than others or how
one model learns differently than another is often difficult yet critical
for increasing their effectiveness, improving prediction accuracy,
and enabling fairness. Traditional methods for comparing models’
efficacy, such as accuracy, precision, and recall provide a quantita-
tive view of performance, however, the qualitative intricacies of why
one model performs better than another are hidden. In this work, we
interview machine learning practitioners to understand their evalua-
tion and comparison workflow. From there, we iteratively design a
visual analytic approach, DeepCompare, to systematically compare
the results of deep learning models, in order to provide insight into
the model behavior and interactively assess trade-offs between two
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such models. The tool allows users to evaluate model results, iden-
tify and compare activation patterns for misclassifications and link
the test results back to specific neurons. We conduct a preliminary
evaluation through two real-world case studies to show that experts
can make more informed decisions about the effectiveness of dif-
ferent types of models, understand in more detail the strengths and
weaknesses of the models, and holistically evaluate the behavior of
the models.

Index Terms: Human-centered computing—Visualization—Visual
analytics; Computing methodologies—Machine learning

1 INTRODUCTION

Deep learning algorithms have become the state-of-the-art for many
tasks in various domains, including medicine, security, and mar-
keting. In natural language processing in particular, techniques
like Convolutional Neural Networks (CNN) and Recurrent Neu-
ral Networks (RNN) have achieved impressive results in sentiment
analysis [17, 38], language modeling [26, 39] and speech recogni-
tion [11]. However, these improvements come at the cost of more
complex models with vast parameter spaces, complex dependen-
cies, and multi-layered architectures. Further, with the advent of
deep learning, the exact structure of the model may be unknown or



too complex to interpret. As a result, many of the algorithms are
black-boxes, making it difficult to understand, diagnose, and explain
results or analyze how the system has learned [20, 34].

Recent work in visual analytics has explored methods towards
explaining the inner-workings of deep neural networks through inter-
active model analysis [16,27,37,43]. However, most efforts focus on
analyzing a single model, and while they begin to “open the black-
box,” systematic comparison of performance and models themselves
remains an open problem. When refining or designing new model
architectures, machine learning practitioners rely on their intuition,
domain knowledge, and prior experience, using quantitative metrics
such as accuracy, precision, and recall as a guide, leading to a model
building processes that are primarily based on trial-and-error [30].
For incremental improvements (e.g., testing different parameters on
the same architecture), these traditional metrics may be sufficient.
However, when comparing models with incomparable architectures
(e.g., a CNN versus an LSTM), these metrics do not accurately cap-
ture the different trade-offs between the models or answer how and
why they may behave differently, for example, being biased towards
certain features in the training set [44]. Additionally, because the
metrics are aggregated, two models can have a similar score while
having vastly different qualitative behavior [33].

We propose that a visual analytics approach can enable practition-
ers to more directly and deeply compare the performance of machine
learning models. By interactively linking the model structure and
the test instances, machine learning practitioners can better examine
the similarities and trade-offs between two models.

We begin by working closely with five machine learning practi-
tioners to better understand their evaluation workflow and understand
in which contexts model comparison in necessary and the challenges
they face. Through a series of interviews, we identified three tasks
and six challenges. We then iteratively designed and developed a
system, DeepCompare, to support these tasks. Given two trained
models, the tool enables users to explore how the models perform
differently. DeepCompare enables practitioners to get an overview
of the performance of the two models, identify the test instances
where the models agree or disagree, and systematically explore
results based on classifications. To understand the root-causes of
misclassifications, the tool visualizes activation patterns in the mod-
els side-by-side and further links specific neurons to highly activated
test results (Figure 1a,b). Interactions like brushing and linking and
details-on-demand are incorporated within multiple views provid-
ing users the ability to intuitively compare and contrast activation
patterns across instances. The tool is aimed at machine learning
practitioners for selection and debugging of different model archi-
tectures, enabling better understanding and improvement of models’
components.

The key contributions of this work are:

• Interviews with machine learning experts to identify tasks for
evaluating and comparing deep learning models,

• A visual analytics approach that enables the systematic compar-
ison of two models with different architectures for providing
insights into the model behavior and performance,

• And two case studies with real-world machine learning experts,
using DeepCompare, showing its efficacy for comparing two
deep learning models.

The paper is organized as follows: Section 2 provides an overview
of related work in model interpretation and comparison. Section 3
describes our interviews with machine learning experts and presents
the tasks and challenges for effective model evaluation. Section 4
describes the design and system overview of DeepCompare and Sec-
tion 5 describes the two preliminary case studies. Lastly, Section 6
provides a discussion of the benefits and limitations of DeepCom-
pare and Section 7 concludes the paper.

2 RELATED WORK

Deep neural networks (deep learning) have emerged as an important
topic with a wide range of application areas, including image recog-
nition [13], natural language processing [7], disease diagnosis [9].
Given this broad applicability, a variety of interactive visualization
techniques for interpreting deep learning models have been devel-
oped in recent years (see [4, 14, 23, 35] for insightful surveys). This
section provides an overview of related literature focusing on the
interpretation of deep learning models and comparison of model
performances, which are most relevant to DeepCompare.

2.1 Interpretation of Deep Learning Models
While accuracy is a major indicator of how a model performs and
which models to choose, people often want to understand how and
why one model performs better than another. This can increase
people’s trust and provide insights for improving the model accuracy
or better adapting the models to specific applications. Since the
successful deep learning models often require a combination of
a specific set of parameters, activations, configurations of layers,
interactive interpretation of such parameters has become an active
research area, which sheds light into the inner-workings on complex
machine learning models and can help people better understand the
major components of a learning algorithm. One common approach
is to provide filters and show activations [42]. This procedure allows
the user to better explore the models learned in the hidden structure
of the layers. Many interactive tools have been developed to explore
the parameter space of visualizing the activation information. For
example, Tzeng et al. [40] and Harley et al. [12] laid out neural
networks as node-link diagrams and visualized how the neuron
weights are learned.

Another popular approach for interpreting deep learning models
is to show the performance of each specific instance of a model,
which allows users to explore how the model behaves for specific
instances that are of primary interest. For example, Patel et al.
enabled interpretability by having a tight coupling of data instances
with performance [30]. Amershi et al. [3] used a score-based system
to explore how the model performs for binary classification tasks.
While these methods work in a non-agnostic fashion, there are other
methods that specifically explore techniques for neural network
models [12, 21]. Such techniques allow users to pick an example,
feed it into a neural network, and see how the network behaves based
on the input. Although it is helpful to understand the data instance-
by-instance, these techniques generally have scalability issues when
handling large datasets, which can make the analysis tedious and
time-consuming.

To mitigate this issue, scalable techniques have found their way
into visualizing neurons and their structure. Liu et al. [22] proposed
a method to cluster the datasets into subgroups and enable users to
explore the activation patterns of a particular instance of a neural
network. CNNVis [22] presents an interactive visual system for
convolutional neural networks that utilized hierarchical clustering
of group neurons and bi-directional edge-bundling to improve the
scalability. Besides, embedding projector [36] and dimensionality re-
duction [24] are also popular for exploring the underlying dynamics
of the feature data. ReVACNN [6] combined multiple coordinated
views with a projected view to provide a visual summary of instance
activations and Rauber et al. [32] studied how the projected view can
help users understand changes in the activation patterns. Moreover,
Krause [18] et al. pursued the direction of exploring transparency in
neural networks for raw data, using features and aggregate statistics
for data distribution.

Additionally, approaches like Gestalt [29] and Prospector [19]
combine feature data along with traditional metrics to enable expla-
nation of models by describing how and why instances are predicted
the way they are and its effect of the overall machine learning met-
rics. Further, Patel et al. [29] provided a holistic picture of the



underlying machine learning pipeline from data acquisition to pre-
diction. Kahng et al. [16] compared a model’s performances through
subset analysis helping users. Compared to existing approaches
for interpreting a single model, our work focused on the task of
supporting machine learning practitioners systematically compar-
ing two deep learning models. Our DeepCompare system provides
visualizations and user interactions for analyzing agreement and
disagreement between models and comparing two models in terms
of performance, activation patterns, and neurons.

2.2 Comparison of Model Performances
Given a set of suitable models, the goal of model comparison is to
find the best-performing model that is most generalizable, has the
least loss, and is the most representative of the task to be performed.
Such comparisons are important in identifying the pros and cons
of architectures, providing direct guidance for model designers to
better select an architecture for a given machine learning task. Many
machine learning frameworks like Tensorflow [1], Weka [15], and
scikit-learn [31] provide summary statistics such as accuracy, preci-
sion, recall as built-in functions for the evaluation of models. These
statistics provide a simple indicator of how a model performs and
allow for a one-to-one comparison between models. However, as
studied in work by Ren et al. [33], interpreting this information can
be misleading as the predictions are treated equally, hiding crucial
information.

Visual analytics methods, which provide contextual information
beyond summary statistics, have successfully applied for machine
learning model selection [2, 16, 25]. Typically, these visualizations
use a compact design to show an overview of the accuracy, loss,
and other user-defined metrics of each model, which enable users to
compare the models’ performances at an abstract level. Data context
information is displayed on demand, allowing users to conduct
detailed analyses when necessary. The most common design choices
are juxtaposition (side-by-side), superposition (overlay), and explicit
encoding [10]. For example, Chuang et al. [5] and Alexander et
al. [2] studied visual approaches for comparing topic models. Yu et
al. [41] explored multiple recurrent neural networks’ hidden states to
explore the data at the sentence-level. Zeng et al. [43] compared the
models in different snapshots during different epochs of the training
process to better explore how the model evolves over time.

Most of the existing methods treated the underlying neural net-
works as a black-box, which made it difficult for users to fully
understand the training data or the model. Moreover, a qualitative
comparison of two different models with different architectures re-
mains an open challenge. In our work, we focus on exploring and
comparing the results produced by two models with different archi-
tectures and understanding why they perform differently. We provide
an interactive system that can help users analyze major activation
patterns used to produce the model results, where the activations are
trained with the same input data and evaluated using the same test
data but applied on different models. Our visualizations can help us
better explore the neurons’ weights, summary activation data, and
the underlying classification results of testing instances.

3 MODEL COMPARISON IN THE ML WORKFLOW

To clarify design requirements and better understand when and how
machine learning practitioners’ compare models, we interviewed
five researchers who build models in their day-to-day.

All five interviewees were machine learning researchers at a large
software company. Two specialized in natural language processing
and three in user modeling. The semi-structured interviews were
conducted in three groups based on use case and each lasted one hour.
The researchers were asked to talk about a specific model on which
they were currently working, their general evaluation workflows, and
challenges they faced. We briefly describe the three example projects
given by the researchers before discussing tasks and challenges.

Text-based Question Answering using Context (Q&A). The first
pair of researchers were building system that could capture context
in natural language systems, such as in conversation agents and
question answering systems. For example, suppose a customer was
interested in purchasing a washing machine and was looking at a
specific model. He could ask “How much water does it use?" and
receive the answer “27 gallons.” The model was based on a recurrent
neural network (RNN) and was trained on question-answer pairs.
Given a product and a question, the model would return the answer
(or specification) for the product.

Next Action Prediction based on User Behavior Logs (NAP). The
next researcher was working on predicting users’ next actions given
their behavior histories by building a model to learn a latent user
embedding.

Outcome Prediction based on User Profiles (OP). The final two
researchers were working on building a model based on users’ de-
mographic information to predict the most likely outcome for a
user (e.g., click an ad or make a purchase). Their major challenge
was the nature of the demographic data: it was categorical, sparse,
imbalanced, and of high-cardinality.

Tasks and Challenges
In the practitioners’ workflows, model comparison presented itself
in two places: (1) model tuning, iteratively adjusting parameters of
a model to improve performance and (2) model evaluation, compar-
ison of a finalized model against the state-of-the-art or alternative
models, which might not have a similar architecture. Across appli-
cation areas and model types, the practitioners described three main
tasks (T1–T3) and six challenges (C1–C6) when comparing models.

T1. Compare aggregate performance metrics.

Arguably the most important step in any model-building workflow
is quantifying the model’s success, from training and validation to
evaluation against the state-of-the-art. In model tuning, changes to
parameters and model architecture are often guided first by quanti-
tative measures (e.g., accuracy, F-score, or Area-Under-the-Curve
[AUC]), then by domain knowledge and intuition. In model evalua-
tion, researchers may be proving advancements in performance over
the state-of-the-art, which may have an entirely similar architecture.
Aggregate performance metrics allow machine learning practitioners
to compare their models against a large number and wide variety of
baselines.

» C1. Loss of detail. For example, two classifiers, A and B, might
have very similar accuracies, but A may result in fewer false positives
and be preferred in cases where false positives should be minimized.

» C2. Loss of context. In tuning, a small change in parameters could
result in a large change in performance. With simply the aggregate
metric, it is difficult to understand why and how the results were
changed and practitioners expressed a desire for more fine-grained
results.

T2. Understand differences in error patterns.

From the high-level metrics, the researchers aim to understand com-
mon patterns causing errors by viewing the results in more detail.
In tuning, this step informs potential modifications: perhaps similar
test examples are being misclassified due to a feature that can be
added. For example, in the NAP use case, the practitioner may want
to isolate examples where the prediction was “open e-mail” but the
actual value was “delete e-mail" and see if there are any common-
alities in them. In evaluation, understanding differences in specific
test examples can help differentiate models and more accurately
describe their trade-offs. Because test datasets contain upwards of
thousands of examples, this qualitative evaluation is typically done



Figure 2: The Layer Weights Detail heatmap displays the learned weights for a user-selected layer of the model. (a) By default, the neurons are
laid out in order of the input data, matching its size and shape. Each cell is colored by the weight in that layer. (b) When a user selects a test
instance, the cells are re-ordered from most positive to most negative and resized by the activation value for that test instance.

through categorical error analysis (e.g., confusion matrices and error
type breakdowns) and spot-checking.

» C3. Lack of direct comparison. While categorical error analysis
is extremely helpful in systematically evaluating the results of a
single model, the researchers must repeat this process independently
for each model they are comparing. Visualizations such as confusion
matrices help in presenting performance result succinctly, but finding
common patterns between models becomes increasingly difficult
when comparing a large number of models.

» C4. Lack of explanation. These detailed summaries explain what
is happening, but not necessarily why. For example, in our Q&A
use case, one research recalled a test example that was classified cor-
rectly, but he was surprised because there were no similar examples
in the training set. He wanted to explore whether there was a latent
representation he missed or if this was due to chance, but because
the results were independent of the models, he could not explore if
there were other similar examples.

T3. Examine underlying model layers.

In cases where the researchers had access to the underlying model,
they would explore the behavior of the model as it relates to learning
and inference. Three out of five of the practitioners used a similar
model visualization tool (such as Tensorboard) to explore the models
independently of each other. The other two did not visualize the
models, but used Jupyter notebook or similar to inspect the learned
model weights.

» C5. Inability to compare different architectures. While this
worked adequately in the tuning scenario, in the evaluation case
where the architectures were very different, comparison of the visu-
alizations did not make sense. Instead, the practitioners wanted a
way to explore major activation patterns for classes of errors across
models. For example, cases where Model A was correct and Model
B was incorrect.

» C6. Inability to understand neuron behavior. In addition to
correlating examples to neuron activation patterns, the practitioners
wanted to correlate specific neurons to highly activated examples
as an exploratory way to understand its logic and summarize the
neuron’s behavior.

4 DEEPCOMPARE: INTERACTIVE MODEL COMPARISON

Through understanding the challenges laid in the previous section,
we defined six design goals:
G1. Provide a high-level overview of performance (C1).
G2. Provide context into prediction results (C2, C4).
G3. Compare test results across models directly (C3, C5).
G4. Correlate test instances with model activation patterns (C4,

C5).
G5. Be architecture agnostic (C5).
G6. Correlate neuron activation patterns with test instances (C6).

DeepCompare was iteratively designed with ongoing feedback
from three of the five machine learning practitioners from the design
requirement collection. Its final design consists of 4 coordinated
panels (Figure 1): (a) layer weights details, (b) neuron activation
distribution, (c) test result details, and (d) test result summary. In
this section, we detail each component of the interface and describe
a usage scenario for movie review sentiment analysis.

4.1 Layer Weights Detail

Towards design goals 2, 4, and 6, we began by visualizing the learned
model weights as a heatmap (Figure 2a). In order to be architecture
agnostic (G5), we display only one layer at a time, pre-selected by
the user. While in its current version, the pre-chosen layer remains
static, we intend to allow for dynamic switching between layers in
the future.

For each neuron and each test instance, we encoded two dimen-
sions: the learned weight as color (red-green) and the activation
value as size. The size and shape of the heatmap is dictated by the
architecture of the model and the dimensions of the layer.

From the Layer Weights Details, users can select a neuron and
review a list of data instances in the Test Result Details (Figure 1c).
Instances are sorted by their activation for the selected neuron so
that the most relevant and responsive ones are on the top. This inter-
action enables users to investigate misclassifications by exploring
properties in the data instances that may have caused a high neuron
activation.

4.2 Neuron Activation Distribution

To understand the role of specific neurons (G2, G6), we provide a
summary of the activation distribution across all test instances for
each neuron. This overview helps users identify neurons that were
persistently active or inactive. We employ a histogram chart to show
the activation distribution (Figure 1b) where the x-axis represents
bins of activation values and the y-axis represents the number of test
instances that fall in each bin. Additionally, when a user selects a
specific neuron to inspect, the test result details view is ranked from
highest to lowest activation on that neuron.

4.3 Test Result Details

Users can explore the Test Result Details (Figure 1c) and review
the low-level details of the test instances, such as the raw sentences,
ground truth labels, and predicted classes. This table enables users
to directly inspect individual instances and see if they have been
classified correctly, which is useful for investigating the similarities
and differences between the models (G3).

We proposed two visual designs for conveying multi-model classi-
fications. The initial glyph design (Figure 3a) used color to indicate
if model A is correct (green) or incorrect (red). The shape of the
glyph indicated if model B agreed (square) or disagreed (circle) with
model A. However, our users found that although this design can



Figure 3: We explored two designs for reviewing model results of each
instance: (a) colors indicate if model A is correct (green) or incorrect
(red) and shapes indicate if model B agreed (square) or disagreed
(circle) with model A; (b) the colors of two side-by-side squares show
the model results and the color of a background rectangle shows the
ground-truth. (c) The side-by-side square design can be extended to
comparing multiclass classifiers.

clearly show the model agreement information, the color is mislead-
ing especially when model B is correct but model A is incorrect,
which is shown as a red circle. Additionally, this method would
not be generalizable across more than two models and obscures the
actual value of the classification.

To address these issues, our final design (Figure 3b) showed the
model results as side-by-side squares inlaid in a larger rounded rect-
angle. The color of the inlaid squares indicates the corresponding
model’s prediction and the color of the background rectangle repre-
sents the ground-truth label. With the final design, users only need to
compare the colors to tell if the models agree with each other and if
the results matched the ground truth. It also keeps the color scheme
consistent with other views. Figure 3c illustrates how this view
might be extended to comparing 3 or more multiclass classifiers.

Selecting a test instance will overlay the activation values onto
the model heatmaps, indicating the values by size (Figure 2b, G4).

Model Agreement Controls

While it is easy to inspect every predicted label when the data is
small, as the number of data instances grows, this process becomes
cumbersome and tedious. We designed model agreement controls
(Figure 1c) that accelerate the exploration by allowing users to
quickly locate data instances and classification patterns of interest.
Specifically, users can filter the data based on the classes in the
ground-truth labels. They can also choose to only keep instances
that are correctly classified or misclassified by both or either of the
models. A typical query is “show me negative reviews where the
CNN model was correct but the LSTM model was wrong.” Such

queries are effective for exploring errors such as false positives and
false negatives so as to gain a deeper understanding of how the
models performed differently and why the error occurred.

4.4 Test Result Summary
Metrics Treemap
Machine learning practitioners often need to compare the overall per-
formance of two models to decide what they should further explore
in detail (G1). Specifically, when working on classification models,
such overviews allow users to quickly inspect misclassification pat-
terns and identify outliers of interest. As illustrated in Figure 4, we
used a hierarchical design to provide a performance overview, where
the first level represents the ground-truth classification of the data
and the subsequent levels show the classes predicted by the models.
To support a visual comparison of the hierarchies, we showed the
hierarchical structure in a treemap (Figure 4a-d). For example, when
dealing with binary classification models, we divide the treemap
into two subdivisions showing the value of the positive and negative
classes. Then, within each subdivision, the four divisions depict the
distribution of performance of both models.

Frequent Word Histogram
In the sentence classification problem, users often want to review
frequently occurring words in the text corpus that are most influential
to the models’ performances. To support this task, we initially
designed a word cloud which aggregates all the data instances and
uses font sizes to encode word frequencies. However, our users
found it difficult to precisely compare the sizes and thus we used
a histogram instead where the words are ordered by frequencies
(Figure 1d).

4.5 Example Workflow
In a general scenario of using our tool, machine learning practition-
ers start with two pre-trained deep learning models and the results
from each model on a single test dataset. The system begins by
calculating high-level statistics about the performance of each model
to construct the Test Result Summary treemap and word frequency
chart. Oftentimes the practitioner has already run the relevant statis-
tics and may be interested in exploring specific test results and
classes in detail. From here, the practitioner can filter test instances
using the model agreement controls (Figure 1c). By reviewing the
filtered data, users can directly explore the instances and compare
the models in terms of the classification results and ground-truth
(Figure 1c). Users can further explore the frequent word histogram
(Figure 1d) to see words that are highly correlated with the selected
test set. Practitioners can then explore activation patterns for specific
test instances, and explore common patterns between test instances.
Conversely, the practitioner can choose to focus on a specific neuron,
and find test instances that highly activate the neuron. By examining
the top n activate instances, the practitioner can begin to draw con-
clusions about the neuron’s behavior. With a combination of these
visualization views, machine learning practitioners can effectively
compare two deep learning models and gain actionable insights for
improving the models or deciding which model to use.

5 CASE STUDIES

We conducted two case studies to demonstrate the effectiveness of
DeepCompare in helping practitioners compare LSTMs and CNNs
models qualitatively. We worked closely with two machine learning
experts in natural language processing (NLP) with two datasets.

5.1 Movie Review Sentiment Analysis
The first case study used a publicly-available dataset consisting of
movie reviews and sentiment [28] (Figures 1 and 5). The dataset
consisted of 5,313 positive and 5,312 negative labeled reviews. The
participants trained two models with the goal of classifying reviews



Figure 4: Metrics Treemap for visually comparing the overall perfor-
mances of the models. All test instances are divided by (b) ground
truth classification, (b) the correctness of model, and (c) the correct-
ness of model B.

as either positive or negative: a Convolutional Neural Network
(CNN) described by Kim et al. [17] and a Long-Short Term Memory
(LSTM) model designed by the participants. The accuracies of
both the CNN and LSTM models were similar, 76.3% and 76.5%
respectively.

First, the analysts explored the treemap overview of the classi-
fication results for positive and negative test instances in the data
(T2) (Figure 1d). Though the accuracies were similar, the analysts
discovered the CNN misclassifies positive reviews more often than
the LSTM, whereas, for negative examples, CNN performs better.
Based on the overview, the analysts further explored negative re-
views where the CNN was incorrect by filtering the results table.
Viewing the word frequency histogram, the analyst was interested to
see many positive words like comedy and well.

The analysts began to explore the activation patterns by clicking
specific test instances, e.g. Neuron #194 (Figure 5a). They saw that
this neuron was not activated for most test instances (Figure 5b). By
examining the activation-ordered Test Result Details view, they saw
that there were many Spanish language reviews captured correctly
by the CNN but not the LSTM (Figure 5c). They were surprised
by this because they had not expected Spanish reviews in the test
set and were unsure whether any existed in the training set. This
encouraged them to review their training data.

They then filtered by test instances where the LSTM was correct
but the CNN was incorrect. By interacting with different patterns
of activation and selecting, they found a particular signature for
negative reviews where CNN classifies incorrectly. In particular,
LSTM Cell #112 was consistently highly activated in classes where
the LSTM was correct but the CNN was incorrect. However, the
Neuron Activation Distribution was skewed highly towards 0, and
they hypothesized that this neuron identifies a specific, strong signal
for positive reviews, but it doesn’t occur frequently in the test set.

The analysts then switched the filter to positive reviews where the

CNN was incorrect and the LSTM was either to better understand
the strengths of the LSTM. The word histogram showed frequent
words that played a role in misclassifications by the CNN, including
little, even, and new. They selected an instance “with a romantic...”
and examined the activation results to pick a highly activated neuron,
which had mostly negative activations on the test instances.

The analysts chose to further work with the CNN, based on
the performance exploration in DeepCompare, despite it having
a slightly lower accuracy.

5.2 Answering Product Questions

For the second dataset, the practitioners were interested in creating
a chatbot for answering questions about specifications of a prod-
uct. The product information dataset contained information as tu-
ples: (product id, specification name, specification
value). Given a product, a question, and a specification, their
task was to match the question to the most relevant product spec-
ification. Specifically, given a question Q about a product P and
the list of specifications (s1,s2, ...,sM) of P, the goal is to identify
the specification that is most relevant to the question Q. The team
had been iteratively debugging and exploring different deep learning
models. Each model takes a question and a specification name as
inputs and outputs a score indicating their relevance. For example,
given the question “How heavy is it?” and the specification name

“Product Weight (in pounds)”, the system outputs a relevance score
0 to 1 (higher is better). To convert this into a binary classification
problem, every pairwise specification, and question combination is
tested, and the specification with the highest score is selected for
each question. This is similar to the approach mentioned in [8].

Using Amazon Mechanical Turk 1, an online crowdsourcing mar-
ketplace, the team collected a dataset of 7,118 question-specification
pairs in total. The dataset was then divided into a training set, a
validation set, and a test set (with the proportions being roughly 80%,
10%, and 10%, respectively). Initially, the team started with training
and optimizing a deep learning model based on LSTM. After that,
the team also experimented with a model based on CNN. Quanti-
tatively, the models have similar accuracy scores of 80.1% for the
LSTM-based model and 76.6% for the CNN-based model. However,
the team wanted to use our tool to analyze qualitatively how the
models perform differently on the test instances. Major questions of
the study included “What are the misclassified instances of LSTM
that CNN got it right?” “What qualitative aspects did the LSTM
miss?” “Why does this happen?” and “Is there a hidden layer
activation pattern for misclassifications?”

While getting an overview of the correctly classified results for
positive test instances (T2), the practitioners were specifically inter-
ested in the misclassifications of the positive instances (T3), where
the CNN classified the instance correctly and the LSTM misclassi-
fied. They explored the major words describing the positive misclas-
sifications. They then examined a specific test instance (a product
id, product specification, and a question pair) in the interactive table
to explore its corresponding activation patterns (T4). Interestingly,
they found a lot of neurons unactivated (having the value 0) for
the CNNs, however, for LSTMs, a major proportion of the neurons
remain activated (T1).

Also, by examining different test instances, they found that there
is a similar pattern for positive test instances in CNNs, the highly
activated neurons are on the positive side of neuron weights (T1). By
going over the activations of different instances, it was interesting
that a neuron (34) behaved anomalously showing spurious activa-
tions for many test instances. While clicking on a specific neuron,
they explored the most activated test instances. The practitioner
found a wide variety distinguishing patterns in misclassifications
between the two models. For example, the frequent words in the

1https://www.mturk.com



Figure 5: A machine learning practitioner explores two models for movie review sentiment classification: a Convolutional Neural Network (CNN)
and Long-Short Term Memory (LSTM) model. (a) While exploring, he examined Neuron #194. (b) The Neuron Activation Distribution showed
a left-skewed distribution, indicating that not many test instances activated this neuron. (c) By observing the list of test instances (ordered by
activation of Neuron #194), he found that the highly activated test instances were in Spanish and the CNN was better at capturing the correct
sentiment than the LSTM.

positive classifications where either the LSTM or the CNN were in-
correct were similar, indicating that both the models may be affected
by the same words in misclassifications.

The practitioners found it most interesting to be able to freely and
interactively explore test results in context. In particular, they found
it helpful to be able to explore activation patterns on an instance-by-
instance basis, a level of granularity they were previously unable to
achieve.

6 DISCUSSION

Through observing two machine learning experts explore their own
model performances through DeepCompare, we found that Deep-
Compare helped facilitate a deeper understanding of models’ benefits
and tradeoffs. Overall, the participants were able to make insights
about the differences between the models and systematically select
a model.

Visual exploration of activation data. We found that, initially,
understanding the distribution of activation patterns for different
test instances was difficult as users did not have a representative
activation pattern in mind for a specific test instance. However,
after multiple interactions with the tool, users were able to discover
patterns across multiple test instances and neurons and gauge which
neurons corresponded to which classes and features.

Identifying incorrect or noisy data in the test set. Inspecting
high activations of specific neurons revealed noisy samples in the
dataset that were misclassified. For example, in the movie review
dataset, many non-English reviews were discovered. This was not
clear from the traditional metrics, but by linking the raw data with
categorical results it became readily apparent when the LSTM was
more susceptible to noisy data. While the visualizations were helpful
in arriving at conclusions about model performance, it is interesting
to note the users also found some incorrectly labeled data in the test

example ground truth through the word histogram and instance table.
While this may only result in minor changes in accuracy, it would
be interesting to examine how such discoveries affect the training
process itself.

Summarizing correlated words with false positives and nega-
tives. The word histogram helped the experts to link specific test
words with the classification results. For example, by filtering the
test examples to “Negative Reviews” where the CNN was incorrect,
words like well, comedy, and good were highly represented than
negative words like bad and little.

While the preliminary case studies begin to demonstrate Deep-
Compare’s utility, there are, of course, many limitations and future
directions for this work.

Generalizability to non-text data types. In this work, we focused
primarily on text data. More work would need to be done in extend-
ing DeepCompare to other data types, especially in multivariate data
or images where textual representations are not feasible.

Scalability of heatmap visualization. Further more, because we
encode the learned weights as a heatmap, the system can represent
most models that can be represented as a matrix. However, this is
not the case for models like Decision Trees. Additionally, typical
models may contain thousands of neurons, which would not extend
to this method.

Extending to domains with no ground truth. The design of Deep-
Compare relies heavily on having a known ground truth, which is
not always the case, as in recommender systems. Evaluating perfor-
mance on models without correct labels remains an open challenge.

Integration of training data. Future work includes integrating
training data in order to explain and understand how models learn
differently.



7 CONCLUSION

We present DeepCompare, a visual analytics tool for comparing
the performance between two deep learning models. Through inter-
views with machine learning practitioners, we identified four tasks
for qualitative performance evaluation and iteratively designed a
system, DeepCompare, to support these tasks. We evaluated Deep-
Compare with two case studies with two natural language processing
researchers to compare a CNN and an LSTM on their own data. Us-
ing DeepCompare, analysts were able to better understand what and
how two models learn differently from the same training data and
further enable exploration of root-cause misclassifications by the al-
gorithms. In future work, we plan to extend the framework to enable
the aggregated visualization of multiple layers of the deep learning
model for efficient exploration and comparison. Additionally, we
will explore methods for tighter coupling between the training data
and the learned weights, to further explain differences in learning.
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