
 

Simplifying Overviews of Temporal 
Event Sequences

 Abstract 
Beginning the analysis of new data is often difficult as 
modern datasets can be overwhelmingly large. With 
visual analytics in particular, displays of large datasets 
quickly become crowded and unclear. Through 
observing the practices of analysts working with the 
event sequence visualization tool EventFlow, we 
identified three techniques to reduce initial visual 
complexity by reducing the number of event categories 
resulting in a simplified overview. For novice users, we 
suggest an initial pair of event categories to display. 
For advanced users, we provide six ranking metrics and 
display all pairs in a ranked list. Finally, we present the 
Event Category Matrix (ECM), which simultaneously 
displays overviews of every event category pair. In this 
work, we report on the development of these 
techniques through two formative usability studies and 
the improvements made as a result. The goal of our 
work is to investigate strategies that help users 
overcome the challenges associated with initial visual 
complexity and to motivate the use of simplified 
overviews in temporal event sequence analysis. 
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The first Choose2 technique, designed for novice 
analysts who are new to event sequence analytics, 
automatically suggests a pair of event categories to 
begin analysis. The second technique suggests 
additional pairs using a set of 6 ranking metrics. The 
third technique was designed for expert analysts (i.e., 
experienced analysts), and consists of an Event 
Category Matrix (ECM) displaying overviews of all event 
pairs and single event categories. This paper motivates 
these techniques and reports on their iterative 
development during two usability studies. The 
continuing goal of this work is to (i) encourage the use 
of simplified overviews in temporal event sequence 
analysis and (ii) inspire discussion of simplified 
overviews for other data types.  

Related Work 
After a brief overview of event sequence analytics and 
EventFlow, we briefly discuss topics influential to our 
techniques including: visual complexity, simplified 
overviews, quality metrics, and automated ranking. 

We implemented Choose2 within EventFlow, which is a 
visual analytics tool that assists analysts with 
understanding complex temporal data composed of 
event sequences [11]. When exploring this type of 
data, analysts are trying to understand the 
relationships that exist among event sequences found 
in multiple records [12]. For example, Electronic Health 
Records (EHR) are studied to understand how differing 
procedures or medications lead to successful outcomes. 
Early work on EventFlow showed how analysts could 
use it to discover meaningful temporal relationships 
between point-based events using aggregated display 
overviews [20,21]. Subsequent revisions to EventFlow 
enabled the analysis of interval events [13,14] as well. 
However, despite the changes to EventFlow, case 
studies with practitioners indicated a consistent 
problem: How should analysts begin their analysis 
when they are overwhelmed by the initial visual 
complexity of their data? While analysts readily 
recognize their data in the detail record view (right side 
of Figure 2), they were often troubled by the visual 
complexity of the overview (center Figure 2). 

Visual complexity refers to the level of detail in a 
visualization created by an analytics tool [8]. For 
example, in scatterplots the number of points, 
occlusion, and entropy has been used as measures of 
visual complexity. For aggregated event overviews, as 
used in EventFlow, Monroe et al. defined two types of 
visual complexity: number of visual elements (e.g., 
vertical bars) and average height of these elements 
[12]. A decrease in the former and an increase in the 
latter indicate a simpler display. Fine-grain measures 
(e.g., number of events categories) have also been 
noted to influence visual complexity [7]. 

 

Figure 2: The professor dataset 
displayed in EventFlow might 
overwhelm novice and expert 
analysts alike when all event 
categories are shown. The 
dataset includes events in the 
careers of 40 professors: point 
events (e.g., time they received 
their bachelor or master degrees, 
published a journal or conference 
paper) and interval events (e.g., 
appointments as assistant or 
associate professor). Choose2 
(top left) suggests starting with 
only two events. 
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students, 1 Information Science graduate student, and 
1 professor of Urban Studies) with limited or no 
experience with visual analytics. The professor dataset 
was used because the context of the data was familiar 
to the participants and there were enough sequence 
variations to produce a visually complex overview at 
the start (i.e., when all event categories are included). 
Using a simpler training dataset, participants learned 
how to read an EventFlow overview and filter by event 
categories using controls in the legend. Participants 
were also informed of our motivation to help users 
begin analysis when the overviews are complex. The 
professor dataset was then loaded and the observer 
pointed to the Choose2 panel asking participants to 
explore freely and provide feedback on that feature. No 
additional information was provided. Participants were 
asked to "think aloud” during their exploration, point at 
what they found unclear, and indicate what they 
learned from the data. Improvements were discussed 
at the end of each 45 minute session. 

During the first study only the simple and ranked list 
panels were tested. The design of these panels was 
revised, the ECM was developed, and then all three 
designs were tested in a second study before being 
refined again. This paper summarizes a few of the 
lessons learned (i.e., what didn’t work) and what 
improvements were made. We organize the results of 
both studies by the three proposed techniques. 

Review of Simple and Ranked List Panels 
The first participants had difficulties with the early 
versions of explanatory text and the names and 
description of the metrics. Improvements were 
discussed and new explanations and labels were 
drafted with early participants and further refined with 

later ones (overall about 7 or 8 versions of the text of 
the simple panel and ranked list were tested with 
participants and colleagues). Short popup explanations 
were added, which now appear when the cursor hovers 
over a method in the dropdown menu. Participants also 
asked for additional ranking metrics (i.e., they had 
access to a subset of ranking metrics from the list 
presented in Appendix II) so three more were added. 

The early version of the interface appeared as a one-
time modal dialog that disappeared after the overview 
was simplified. Participants wanted to come back and 
try more pairs, so this dialog was refactored to be a 
permanent non-modal panel, visible after loading the 
dataset and always available. The 6 participants in the 
second study were content with the panel placement.  

Originally the simple panel included a menu of the 
ranking metrics to choose from, but it was confusing for 
first time users causing us to push that menu to a 
separate “ranked list” panel (so that the more 
extensive exploration of the pairs and their rankings 
would take place in the ranked list panel). Participants 
had difficulties guessing what the ranking method did 
based solely on the labels, but had better results by 
inspecting the list, trying different pairs, and looking at 
the scores assigned to each pair. The original design of 
the ranked list panel colored each pair using a color 
gradient from green (high ranking) to red (low 
ranking). This was found confusing because color is 
used heavily in EventFlow (and mapped to event 
categories), so the use of color was discontinued. 

Review of Event Category Matrix 
The first study led to the design of the ECM as a 
method to systematically explore all pairs, and it was 

Appendix I: Expanded 
explanation of Figure 1b, the 
Event Category Matrix. 

Starting along the diagonal and 
from the top analysts can review 
the data one event category at a 
time: a few professors have 
multiple Bachelor degrees, not 
everyone has a Masters. Analyst 
can also see that not everyone 
has reached full professor status. 
At a glance, analysts can see that 
professors all have many 
conference and journal papers; 
however, most have either one or 
no book or newspaper 
publications. The pairwise 
overviews show that those who 
had multiple bachelors received 
their PhD faster than those who 
had only one. Some professors 
started as Assistant professor 
before defending their PhD. We 
see that book and newspaper 
publications generally appear in 
later career with a few dramatic, 
easily visible, exceptions. In the 
middle portion, “Conference” and 
“Journal” events repeat 
frequently which adds complexity 
to the visualization. This 
complexity may indicate potential 
category pairs of interest and 
analysts can choose to review the 
details in EventFlow’s main 
window. 

 

Late-Breaking Work: Interaction in Specific Domains #chi4good, CHI 2016, San Jose, CA, USA

2221



 

tested in the second study. The “Preview all” and the 
ECM panel were immediately well received by 4 out of 
the 6 participants who felt at ease and said they 
understood what it was, stating “I know it’s a matrix”; 
however, all took a few minutes to fully understand this 
new display. Two participants said at first that the 
diagonal was not needed and could be removed; 
however, they all eventually understood that the 
diagonal was useful to show one event category at a 
time. They commented that it was not really a pair, but 
still was useful to have. Out of the 4 participants who 
were immediately comfortable, 2 said they would not 
use the other panels but would go to the ECM directly. 
One participant said “I like [the ECM]; it shows where 
the complexity is.” Two participants took more time 
understanding what the ECM did (between 3 and 5 
minutes). All participants discovered that they could 
click on cells of the ECM to select the event categories 
and see the overview in more detail in the main 
EventFlow window. The text and labels on the panels 
were also thoroughly discussed and revised. 

Summary of Findings 
Overall the placement and clarity of the three panels 
improved over the course of the two usability studies. 
All participants understood what had happened when 
the overview was simplified. However, it is likely that 
the ranking methods will remain difficult to grasp for 
some users. On the other hand the ECM seems very 
promising because it was understandable (without 
training, and only 2-4 minutes of exploration). Once 
they mastered the ECM participants were able to 
describe what they learned from it and seemed more 
focused on the data than when using other techniques. 

Limitations and Future Work 
The goal of Choose2 is to provide techniques for 
analysts of varying skill levels to help reduce 
overwhelming/initial visual complexity; however, there 
are many possible ways to do this (e.g., providing 
details-on-demand). Scaling the ECM is a challenge 
since the number of pair views increases quadratically 
with the number of event categories, which can be 
addressed by applying the rank by feature framework 
[17]. Additionally, our usability studies were formative 
and further testing is needed to investigate the 
usefulness with professional analysts. Future work will 
focus on exploring ranking metrics, solutions to scaling, 
and testing with analysts. 

Conclusion 
This work investigates three new techniques for 
providing simplified overviews that reduce the visual 
complexity of temporal event sequences in aggregated 
display overviews. We described how the designs 
evolved over time and what improvements were made. 
The display of a single pair of categories provides a 
simple way for novice users to start analysis of 
temporal event sequences. The ranked list of 
suggestions is slightly more complicated, but provides 
much greater assistance for novices. For more 
advanced users the ECM provides a way to 
systematically explore all event category pairs. Our 
usability studies demonstrated that all three techniques 
were learnable without training. Mitigating challenges 
with visual complexity is critical in event analytics. We 
believe that the proposed techniques will help event 
sequence analysts reduce initial visual complexity, 
thereby accelerating data exploration. Additionally, we 
believe that these techniques are applicable to other 
data types and should be further explored. 

Appendix II:  
Six ranking metrics were 
implemented by Choose2’s 
ranked list based on maximizing 
or minimizing the following: 
record coverage, event co-
occurrence, and frequency of 
event occurrence. We define 
these metrics as followed: 

Record Coverage. The cardinality 
of the union of records containing 
event category A and records 
containing event category B. 

Event Co-occurrence. The 
cardinality of the intersection of 
records containing event category 
A and records containing event 
category B. 

Frequency of Event Occurrence. 
The top two occurring event 
categories based on the total 
number of occurrences across all 
records. 
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