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High-Volume Hypothesis Testing: Systematic Exploration of Event
Sequence Comparisons
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and MARGRET BJARNADOTTIR, University of Maryland, College Park

Cohort comparison studies have traditionally been hypothesis driven and conducted in carefully controlled
environments (such as clinical trials). Given two groups of event sequence data, researchers test a single hy-
pothesis (e.g., does the group taking Medication A exhibit more deaths than the group taking Medication B?).
Recently, however, researchers have been moving toward more exploratory methods of retrospective analysis
with existing data. In this article, we begin by showing that the task of cohort comparison is specific enough
to support automatic computation against a bounded set of potential questions and objectives, a method that
we refer to as High-Volume Hypothesis Testing (HVHT). From this starting point, we demonstrate that the
diversity of these objectives, both across and within different domains, as well as the inherent complexities
of real-world datasets, still requires human involvement to determine meaningful insights. We explore how
visualization and interaction better support the task of exploratory data analysis and the understanding
of HVHT results (how significant they are, why they are meaningful, and whether the entire dataset has
been exhaustively explored). Through interviews and case studies with domain experts, we iteratively de-
sign and implement visualization and interaction techniques in a visual analytics tool, CoCo. As a result
of our evaluation, we propose six design guidelines for enabling users to explore large result sets of HVHT
systematically and flexibly in order to glean meaningful insights more quickly. Finally, we illustrate the
utility of this method with three case studies in the medical domain.
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1. INTRODUCTION

Sequences of timestamped events are currently being generated across nearly every
domain of data analytics. Consider a typical e-commerce site tracking each of its users
through a series of search results and product pages until a purchase is made. Or
consider a database of electronic health records containing the symptoms, medications,
and outcomes of each patient who is treated. Every day, this data type is reviewed by
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Fig. 1. Two datasets, each containing about 1,000 patients as they are transferred throughout a hospital,
are being compared using CoCo: patients who lived versus patients who died (demo dataset; no real data).
On the left, a legend pairs each event type with a color marker. Below, high-level statistics about each dataset
are shown in a table. The center panel displays a compact view of the results of high-volume hypothesis
testing, ranked by significance. Within the list, details-on-demand for a selected hypothesis (comparing the
average timing between the blue and red event) is expanded in the gray panel to provide more details and
context for the results. To the right of the result list is a minimap of the results, which provides an overview
of the users’ progression through the result set, showing how many results have been reviewed (gray) and
how many are left (red). A set of control panels (bottom left and right panel) allows users to sort and filter
the results by event sequence length, event types, sample size, significance, or metric type.

humans who apply statistical tests, hoping to learn everything they can about how
these processes work, why they break, and how they can be improved upon.

Human eyes and statistical tests, however, reveal very different things. Statistical
tests show metrics, uncertainty, and statistical significance. Human eyes see context,
confirm what they already know, and discover patterns that are unexpected.

Visualization tools strive to capitalize on these latter, human strengths. For exam-
ple, the EventFlow visualization tool (http://hcil.cs.umd.edu/EventFlow) [Monroe et al.
2013a] supports exploratory, visual analyses over large datasets of temporal event se-
quences. This support for open-ended exploration, however, comes at a cost. The more
that a visual analytics tool is designed around open-ended questions and flexible data
exploration, the less it is able to effectively integrate automated, statistical analysis.
Automated statistics can provide answers, but only when the questions are known.

The opportunity to combine these two approaches lies in the middle ground. By all
accounts, the goal of open-ended questions is to generate more concrete questions. As
these questions come into focus, so too does the ability to automatically generate the
answers. This article introduces CoCo (for “Cohort Comparison,” Figure 1), a visual
analytics tool that is designed to capitalize on one such scenario.

Consider again the information that is tracked on an e-commerce site. From a busi-
ness perspective, the users of the site fall into one of two groups: people who bought
something and people who did not. If the goal is to convert more of the latter into
the former, it is critical to understand how these two groups, or cohorts, are differ-
ent. Did one group look at more product pages? Or spend more time on the site? Or
have some clear demographic identifier such as gender, race, or age? Similar questions
arise in the medical domain as well. Which patients responded well to an experimental
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medication? How did their treatment patterns differ from the patients who received
the standard treatment?

Although comparing two groups of data is a common task, with temporal event se-
quence data in particular, the task of running many statistical tests becomes complex
because of the variety of ways the cohorts, sequences (entire records), subsequences
(a subset of events in a record), and events can differ. In addition to the structure
of the event sequences (e.g., order, co-occurrences, or frequencies of events), the at-
tributes about the events and records (e.g., gender of a patient) and the timestamps
themselves (e.g., an event’s duration) can be distinguishing features between the co-
horts. For this reason, running statistical tests to cover all these cases and determining
which results are significant become cumbersome. Based on 3 years of case studies, we
present a taxonomy of metrics for comparing cohorts of event sequences.

Current tools for cohort comparison of temporal event data (Section 2) emphasize
one of two strategies: (1) purely visual comparisons between groups, with no integrated
statistics, or (2) purely statistical comparisons over one or more features of the dataset.
By contrast, CoCo is designed to provide a more balanced integration of both human-
driven and automated strategies.

We begin by showing that the task of cohort comparison is specific enough to support
automatic computation against a bounded set of potential questions and objectives, a
method we refer to as High-Volume Hypothesis Testing (HVHT). From this starting
point, we demonstrate that the diversity of these objectives, both across and within
different domains, as well as the inherent complexities of real-world datasets, still
requires human involvement to determine meaningful insights. We explore how vi-
sualization and interaction better support the task of exploratory data analysis and
understanding HVHT results (how significant they are, why they are meaningful,
and whether the entire dataset has been exhaustively explored). Through interviews
and case studies with domain experts, we iteratively design and implement visual-
ization and interaction techniques in a visual analytics tool, CoCo. As a result of our
evaluation, we propose six design guidelines for enabling users to systematically and
flexibly explore large result sets of HVHT in order to glean meaningful insights more
quickly. Lastly, we illustrate the utility of this method with three case studies in the
medical domain.

The direct contributions of this article are as follows:

(1) A taxonomy of metrics for comparing groups of temporal event sequences
(2) Six design guidelines for providing systematic exploration of high-volume hypoth-

esis testing (HVHT) results
(3) A visual analytics tool that implements these design guidelines for balanced inte-

gration of HVHT and user-guided analysis with an intelligent user interface
(4) Three case studies in the medical domain that illustrate the applicability and

utility of the proposed visualization and interaction designs for the analysis and
comparison of medication usage patterns

On a broader level, the goal of this article is to highlight the relationship between
task specificity and the ideal balance between humans and statistical analysis, so that
future efforts can better leverage the strengths of both approaches.

2. RELATED WORK

2.1. Event Sequence Visualization and Comparison

Gleicher et al. [2011] provide an extensive survey of visual comparison techniques
classified into three categories and combinations thereof: juxtaposition, superposi-
tion, and explicit encoding. We use this characterization as a framework for exploring
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designs for visualizing comparison results. Though many visualization tools have been
designed for event sequence visualization [Monroe et al. 2013a; Stolper et al. 2014],
there has been little research on visualizing event sequence comparison until recently.
Zhao et al. [2015] design MatrixWave, a visualization designed to compare the flow of
users in clickstream datasets. MatrixWave focuses on differences in the occurrence of
immediate, pairwise steps in the event stream, whereas we generalize to differences
in single events and sequences of any length, as well as differences dealing with time.

In addition to finding differences in datasets, event sequence comparison has been
explored in the context of finding similarities. Vrotsou et al. [2014] introduce a set of
event sequence similarity measures. They explore using visualization and interactive
data mining to cluster similar groups of event sequences. While we focus on difference
metrics, we believe our work can be extended to applicable similarity measures.

2.2. Statistics for Comparing Cohorts

In medical cohort studies, the most prevalent approach for comparison is survival anal-
ysis, where survival time is defined as the time from a given point to the occurrence
of an event [Bewick et al. 2004]. The Kaplan-Meier method is often used to analyze
the survival time of patients on different treatments and to compare their risks of
death [Collett 2003; Dupont et al. 2004; Goel et al. 2010]. Based on the Kaplan-Meier
estimate, the survival time of two groups of patients can be visualized and compared
with survival curves, which plot the cumulative proportion surviving against the sur-
vival times [Bewick et al. 2004]. Also, the log-rank test is often used to statistically
compare two survival curves by testing the null hypothesis (i.e., that there is no differ-
ence between the curves). Compared with survival analysis, the event sequences data
used in our work is much more complicated and requires a more advanced analysis
model.

Currently, tools that combine visualization and statistics for medical cohort analysis
focus on single cohorts. CAVA [Zhang et al. 2014] is a visualization tool for interactively
refining cohorts and performing statistics on a single group. Recently, Oracle published
a visualization tool for cohort study [Oracle 2011]. Based on patients’ clinical data, it
supports interactive data exploration and provides statistics as well as visualization
functionalities. These tools similarly focus on combining visualization with automated
statistics and providing an interactive interface for selecting cohorts; however, both
tools aim at grouping and identifying patient cohorts for further characterization, while
our work focuses on comparing two existing cohorts based on their event histories.

2.3. Exploratory Hypothesis Testing

As event sequence datasets grow larger and larger, researchers are moving toward more
exploratory methods for hypothesis generation and testing. The statistical implications
of high-volume hypothesis testing (e.g., inevitable false positives) have been extensively
researched [Benjamini and Yekutieli 2001; Shaffer 1995; Dunn 1961]. In CoCo, we allow
users to apply the Bonferroni correction [Dunn 1961], which corrects for false positives
by dividing the acceptable significance level by the number of tests performed.

Liu et al. [2011] explore the statistical and technical implications of automatically
generating and testing many hypotheses. Similar to our work, they find that interactive
techniques such as sorting and filtering are necessary for parsing these result sets, but
their display is largely textual. We explore more visual methods for displaying both the
hypothesis and results.

2.4. Temporal Data Mining

Automated hypothesis testing is closely related to big data mining. There are many
established algorithms for frequent sequence mining [Mabroukeh and Ezeife 2010;
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Han et al. 2007] and association rule (itemset) mining [Agrawal et al. 1993]. The
majority of data mining techniques focus on mining sequences in a single dataset and
not comparing across two datasets. While two data mining techniques can be used in
tandem to facilitate similar comparisons (e.g., comparing frequent sequence results
across two datasets), more specialized methods are needed to answer the question,
“Which sequences occur significantly differently between these datasets?” Bay and
Pazzani [2001] introduce contrast mining sets, an algorithm for detecting differences
between groups based on record attributes, such as age, gender, or occupation. In
addition to record attributes, we also look at differences in event sequences, based on
both occurrence and timestamps.

Typical data mining algorithms are a blackbox, allowing little user involvement
during the process. Recent work has been done on interactive sequence mining [Vrotsou
and Nordman 2014; Lammarsch et al. 2014; Perer and Wang 2014; Federico et al. 2015],
though these systems focus primarily on mining frequent patterns in a single dataset.
Little work has been done on involving the user in mining differences between datasets.

3. BALANCING AUTOMATION WITH HUMAN INTERACTION

Purely statistical methods of comparison would benefit from user intervention. With
the sheer number of metrics, it is time consuming to run every metric before exploration
can begin, especially when not every metric may be required for analysis. Users with
domain knowledge about the datasets would ideally be able to select from the metrics
and easily eliminate unnecessary metrics. Further, questions asked during cohort com-
parison may vary based on how the cohorts were divided. If the cohorts were divided by
outcome (e.g., patients who lived vs. patients who died), the sequence of events leading
up to them becomes more important. Analysis might revolve around determining which
factors (time or attributes) or events lead to the outcome by determining how the met-
rics differ between the groups. Conversely, if the cohorts were split based on an event
type, questions may revolve around finding distinguishing outcomes (e.g., patients who
took Drug A may have more strokes than patients who took Drug B). Exploration of
cohorts that are split by time (e.g., the same patients over two different months) may
be more open ended and require all metrics. The cohorts can be distinguished by time
factors, event attributes, or events themselves (sequences of events or outcomes).

Results from purely statistical methods can also be difficult to parse and understand.
Users may have different priorities and questions, which require different methods for
sorting the results. For example, a user may be interested in any difference between
the datasets, regardless of the direction of the difference, whereas another user may be
interested only in results that occur more frequently in Cohort A. Integrated interaction
techniques would allow users to specify their priorities when viewing results.

Purely visual tools for temporal event sequences are a good starting point for de-
veloping analysis tools for cohort studies but can be improved by the inclusion of the
statistical tests used in automated approaches. For example, EventFlow assumes that
each patient record consists of timestamped point events (e.g., heart attack, vaccina-
tion, first occurrence of symptom), temporal interval events (e.g., medication episode,
dietary regime, exercise plan), and patient attributes (e.g., gender, age, weight, ethnic
background).

In multiple case studies with EventFlow, the researchers repeatedly observed users
visually comparing event patterns in one group of records with those in another group.
In simple terms, the question was: what are the sequences of events that differentiate
one group from the other? A common aspiration is to find clues that lead to new hypothe-
ses about the series of events that lead to particular outcomes, but many other simple
questions also involved comparisons. Epidemiologists analyzing the patterns of drug
prescriptions [Monroe et al. 2013b] tried to compare the patterns of different classes of
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drugs. Researchers analyzing task performance during trauma resuscitation [Carter
et al. 2013] wanted to compare performance between cases where the response team
was alerted of the upcoming arrival of the patient or not alerted. Transportation an-
alysts looking at highway incident responses [Guerra-Gómez et al. 2011] wanted to
compare how an agency handled its incidents differently from another. Their obser-
vations suggest that some broad insights can be gained by visually comparing pairs
of EventFlow displays (e.g., users could see if the patterns were very similar overall
between one month and the next) or very different (e.g., a lot more red or the most
common patterns were different), but users repeatedly expressed the desire for more
systematic ways to compare cohorts of records.

Our contribution is to enable researchers to be far more flexible in examining cohorts
and facilitate human intervention where it can save time and effort. Because of the
predefined problem space of comparing temporal event sequences, we can save users
time by having answers to common questions readily available and giving them a
starting point for their exploration. It is important to note that CoCo is intended for
exploratory data analysis, which will reveal areas of interest to analysts and generate
hypotheses. Users are encouraged to conduct follow-up (and more controlled) studies
after they have identified possible hypotheses—such as clinical trials in the medical
domain or A/B testing in the e-commerce domain.

Throughout this article, we use sample data of patients as they are transferred
through a hospital. The patients are compared based on their outcome: those who
lived versus those who died. All 2,356 patients are brought to the emergency room and
contain the “Emergency” event and all patients are discharged with the “Exit” event.
Other events include being admitted to a normal hospital room (“Normal Floor Bed”),
being admitted to the ICU (“ICU”), and being administered aspirin (“Aspirin”). This
dataset is a demonstration dataset only and uses no real data.

4. METRICS FOR COMPARING COHORTS

Metrics for comparing cohorts are numerous and can be grouped into five main cate-
gories: summary metrics, time metrics, event sequence (both whole record sequences
and subsequences thereof) metrics, event attribute metrics, and record attribute met-
rics. These metrics are a direct result of observing EventFlow users as they analyzed
cohorts of event sequences in nine case studies performed over 4 years [Monroe 2014].
Seven case studies were in the health care domain (with pharmacists and epidemiolo-
gists), one in sports analytics (basketball), and one in transportation.

4.1. Summary Metrics

Summary statistics apply to the cohorts as a whole and provide a high-level overview
of the datasets.

Number of records. Total number of records in each cohort.
Number of events. Total number of events in each cohort.
Number of unique records. Total number of unique records in each cohort based on
the sequence of events (absolute times are not considered).
Number of each event. Total number of occurrences for each event type per cohort.
Minimum, maximum, and average length of records. The length of a record is con-
sidered as the number of events in that record.

4.2. Event Sequence Metrics

Event sequence metrics deal with the order and structure of event sequences. Se-
quences are differentiated by whether they compose the entire record’s history (se-
quence) or a subsequence thereof. Each of the following metrics can be presented as the
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percent of records containing the event or sequence or as the percent of all events or
sequences. The former method provides a sense of how many individual records had
this sequence, whereas the latter method provides a sense of how events or sequences
might repeat themselves within one record. For example, if an event occurs a high num-
ber of times but only in a few patients, it is implied that the event occurs frequently
per record.

Prevalence of an event. The percent of records that contain an event.
Prevalence of a subsequence. The percent of records in which a subsequence appears.
For example, the patients who lived are given aspirin before going to the emergency
room more often than the patients who died.
Prevalence of a whole sequence. Percent of records with a given sequence.
Order of sequential events in a subsequence. The percent of records containing event
A directly preceding event B versus B preceding A.
Commonly co-occurring (nonconsecutive) events. The percent of records containing
both events A and B (in any order, with any number of events between them).
Prevalence of outcomes. A single event is prevalent as an “outcome” (i.e., the last
event in the sequence). This metric in particular applies only to cohorts that are not
already split on an outcome event.

4.3. Time Metrics

Time metrics deal with the timestamps at both the event and sequence levels—relative
and absolute.

Absolute time of an event. Prevalence of a particular timestamp of an event or mul-
tiple events (e.g., all events in one cohort occurred on the same day).
Duration of interval events. The duration of a particular interval event. For example,
this can be the length of exposure to a treatment or the duration of a prescription.
Duration between sequential events. The time between the end of one event and
the beginning of the next, for example, the average length of time between hospital
patients entering the emergency room and being transferred to the ICU.
Duration between co-occurring (nonsequential) events. The length of time between
nonconsecutive events (two events with some number of other events occurring be-
tween them).
Duration of a subsequence. The length of time from the beginning of the first event
in a subsequence to the end of the last event in the subsequence.
Duration from a fixed point in time. The length of time from a user-specified, fixed
point—aligned by either a selected event or absolute date/time.
Duration of overlap in interval events. The overlap (or lack thereof) of interval events.
Cyclic events and sequences. The duration between cyclic events and sequences.
Survivor analysis. Rate at which an event or sequence occurs or diminishes over
time.

Statistics for each of these metrics include the minimum, maximum, median, and
average durations or values. Other summary statistics are also applicable.

4.4. Event Attribute Metrics

Any of the aforementioned metrics can be broken down by values of an attribute of the
events instead of the event type itself. This can be done by swapping an event type by
the values of a particular attribute. For example, in a medical dataset, we might be
interested in seeing how a particular emergency room doctor might be related to the
outcome of a patient. We would then switch all events of type “Emergency” with the
value of its “doctor” attribute. If there are three doctors, this would create three new
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pseudo-event types. We can use the metrics from earlier to analyze the difference in
event sequences, times, or prevalence of each doctor in either cohort.

4.5. Record Attribute Metrics

Record-level attributes (such as patient gender or age) compare the cohorts as pop-
ulation statistics. General statistics across the entire dataset are a problem already
tackled by analytics tools such as Spotfire [TIBCO 2014] or Tableau [Software 2014];
however, these tools look at a single attribute. For example, they might compare the
number of males versus females or patients on Wednesday versus Thursday. There
may be implications about the combinations of record attributes (e.g., the women on
Wednesday vs. the women on Thursday vs. the men on Wednesday vs. the men on
Thursday). In clinical trials, it is important that all patient attributes are balanced
and currently no visual analytics tools exist for visually confirming that all attribute
combinations are balanced.

4.6. Combining Metrics

The number of metrics is further multiplied because any combination of the afore-
mentioned metrics is a new metric. For example, a sports analytics researcher may
be interested in how a particular player (as an attribute of an event) performs within
2 minutes (time) after halftime (event order).

5. DESIGN GUIDELINES FOR HVHT VISUAL ANALYTICS TOOLS

Results from previous work [Malik et al. 2015] illustrated that expert analysts feel
limited by the inability of current tools to evaluate the numerous hypotheses that
can be applied to event sequences comparisons. Using a Design Methodology process
[Sedlmair et al. 2012], we aimed to address these limitations and understand how to
leverage the benefits of automated statistical analysis with user-guided exploration
into a visual analytics tool.

We conducted interviews with three analysts experienced with event sequence visual-
ization: a medical researcher from a local hospital, a graduate student at the University
of Maryland, and a business school professor. All have used EventFlow [Monroe et al.
2013a] extensively and have active research projects comparing cohorts of patients. An
initial version was implemented. After our three users had used the initial version with
their own data and analytic goals, we interviewed them during a period of a month to
collect feedback on the benefits and pitfalls of the initial version and analysts’ needs
when reviewing hypothesis results. Feedback was also collected from a dozen other
short-term detailed demonstrations to potential future case study users, including a
transportation analyst, business insight analysts, and statisticians.

Through this methodology, we designed and evaluated a visual analytics tool, CoCo,
and distill our lessons learned into six design guidelines for balancing automated high-
volume hypothesis testing with integrated visualization and interaction:

Guideline 1. Reduce wait times during computation.
Guideline 2. Convey hypotheses succinctly.
Guideline 3. Visualize statistical results and differences.
Guideline 4. Allow flexible methods for organizing results.
Guideline 5. Provide flexible interactions for parsing results.
Guideline 6. Provide context to highlight statistical uncertainty, false positives, and
error rates.
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Guideline 1: Reduce Wait Times During Computation

In any form of HVHT, wait times are a given, but this problem is especially prevalent
when dealing with groups of event sequences because of the exponential number of
unique sequences that exist in a single dataset. Consider the simple case of a dataset
with only two events: A and B. Without considering repetitions, there are five unique
event sequences that can occur:

A B A → B B → A AB (at the same time)

When allowing repetition, the number of event sequences becomes infinite:

A → A B → B A → A → B AB → B . . .

Further, each event sequence can have multiple metrics applied to it. For example,
with the sequence A → B, we can consider the prevalence among records (i.e., percent
of records containing this sequence), frequency (i.e., average number of occurrences per
record), and duration (i.e., average time from A to B). When comparing cohorts, the
application of each of these metrics to each cohort is equivalent to a hypothesis. Does
A → B occur similarly in both cohorts, or does it occur significantly more in one than
the other? Is the duration of A → B the same in both cohorts, or is it longer in one
than the other? Thus, a simple dataset with only five event types can have hundreds
of hypotheses applied to it.

In CoCo, we applied two different methods for computing the hypothesis tests: (1) per-
forming all calculations ahead of time and providing results only when all results are
complete and (2) calculating hypothesis tests by category (e.g., single event frequency,
sequence frequency, time gaps, etc.) and allowing users to see results as they are
available.

The first method results in long wait times but allows the results to be ranked
in a more meaningful way. That is, by waiting for all results to be completed, the
most “differentiating” or significant results can be displayed first, thus offering more
guidance to the user about which results are important.

The second method allows users to see partial results as soon as they are ready.
When a metric is fully calculated, the user can select that metric to see results for that
metric. In early case studies, this enabled users to narrow their focus, although they
found that they weren’t necessarily interested in specific metrics, just the most major
differences—regardless of metric type. We structured the metrics to first calculate the
most simple metrics first (e.g., single event metrics), which enabled users to understand
their datasets on a broader level before going into detailed sequence metrics.

Our future goal is to minimize wait time but give prompt feedback on which metrics
might be meaningful to look at immediately, in accordance with Stolper et al.’s design
guidelines for progressive visual analytics [Stolper et al. 2014].

Guideline 2: Convey Hypotheses Succinctly

In an initial implementation, we used the LifeLines2 [Wang et al. 2010] triangle scheme
to display event sequences and organized results by metric (e.g., all results dealing
with the occurrence of sequences were grouped together; all results dealing with co-
occurrences of events were grouped together, etc.). With this organization scheme, the
metric selected by the user implied a lot about the sequences in its result set, and
all sequences looked identical. In feedback on this design, many users felt that only
visualizing the sequence (with no indication of what the hypothesis was) was confusing
and they would often have to remember which metric was selected.

We conducted interviews with three domain experts to determine how to distinguish
between various event sequence features. In the interviews, we asked each expert how
they would visually differentiate the following four types of sequences:
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Fig. 2. Mockups of expert users’ responses (left) and resulting glyphs (right) for visually differentiating four
properties of event sequences: (a) whole record sequences, (b) concurrent events, (c) consecutive sequences,
and (d) nonconsecutive sequences.

(a) Whole record sequence
(b) Concurrent events
(c) Consecutive sequences
(d) Nonconsecutive sequence

Mockups of responses are shown in Figure 2(a).

(a) Whole record sequences. A whole record sequence is a sequence that is an entire
record (e.g., patient) history. Users suggested differentiating these sequences by
adding markers indicating the beginning and end of the sequence, to signify no
events occur before or after the sequence. Square markers were chosen over the
angled brackets to avoid ambiguity with the notion of a “set.”
(b) Concurrent events. Concurrent events are two or more events that occur at exactly
the same timestamp. Users conveyed concurrent events by either overlapping them
or grouping them with a circle. The overlapping method was preferred because it
was more compact.
(c) Consecutive and (d) nonconsecutive sequences. A consecutive sequence is a series
of events that appears without any other events within them. Nonconsecutive se-
quences may contain other events within them. Users had more variation in how they
chose to differentiate consecutive versus nonconsecutive events. Two users chose to
keep consecutive sequences the same while differentiating nonconsecutive sequences
by placing a marker between events. The third user suggested the opposite: show no
differentiation between nonconsecutive events but place a bar to join consecutively
occurring events.

In a later version, we changed the event icons from triangles to slim rectangles
to conserve screen real estate (and give users the option to toggle between the two
versions). The current scheme is shown in Figure 2(b).

Guideline 3: Visualize Statistical Results and Differences

In designing the result displays, we needed a design that conveyed information about
the difference in value (both magnitude and direction) and the statistical significance
of the result. Additionally, we needed to avoid using color because color is already used
to encode the event categories. We considered the three methods of visual comparison
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Fig. 3. Designs considered for presenting difference results between two cohorts: (a) juxtaposition (directly
comparing two bars), (b) superposition (overlaying bars darkened area is the shared amount while the
lightened area indicates the difference). The results are either side by side (top) or stacked (bottom), and
(c) explicit encoding only, which encodes only information about the direction and magnitude of the difference,
using shape and size.

outlined by Gleicher et al. [2011] to encode this data: (1) juxtaposition, (2) superposition,
and (3) explicit encoding. Figure 3 shows the designs we considered.

(a) Juxtaposition showed the absolute values in each cohort and worked well for values
that had a fixed range (e.g., percentages for 0% to 100%). However, it was not
adaptable for variable-range values (e.g., time, where a difference can be as small
as 1 minute or as large as 3 months) or for displaying time and prevalence metrics
in the same view. It is also not ideal for scanning for differences easily because the
difference is not explicitly encoded.

(b) Superposition has the advantage of displaying the raw values and direction of
difference more clearly but had similar problems to juxtaposition in displaying
time and prevalence results on the same axes; because it is axis dependent, it is
not possible to display time and percentage in the same view.

(c) We found that an explicit encoding only offered the best option by allowing users
to easily see and interpret differences between the datasets, despite that absolute
values in each cohort are obscured. The absolute value information was available
using interactions such as hover or details on demand to display them.

With the explicit encoding method, we were also able to explore different methods for
encoding the differences: absolute difference, relative difference, and ratio. The values
in datasets can be categorized in three groups. Take, for example, the occurrence of a
sequence:

(1) Occurs in both datasets the same way (no difference)
(2) Occurs in both datasets, but more in one
(3) Occurs in only one dataset

Again, providing the absolute difference is sufficient when presenting prevalence re-
sults, because percentages are bounded to 100%. However, with results dealing with
time, a single scale does not accurately convey differences because (1) time is un-
bounded, and (2) simply scaling the axis does not always work because even within a
single dataset, different time granularity may exist (e.g., a hospital stay is on the order
of days, whereas a prescription is on the order of months). Relative differences and
ratios eliminate the problems of multiple units and granularities; however, we found
that users understand ratios more clearly than relative differences. For example, it
is easier to interpret “hospital stays are two times longer in cohort A than cohort B”
rather than “hospitals stays are 100% longer.” Because ratios can be anywhere from 1
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(in case 1) to infinity (in case 3), we bound the axis to a user-defined maximum (default:
4×). If the ratio is above the maximum, the bar grows off the side, and if it is infinite,
an infinity symbol is displayed next to the ratio bar.

Guideline 4: Allow Flexible Methods for Organizing Results

We explored four methods for organizing the results, each with its own benefits:

(1) Metric hierarchy. This was the approach taken in the initial version and it worked
well in guiding the users. Users typically started their analysis based on sequence
length, looking at single events before looking at longer sequences, then progressing
based on their specific questions. This method worked best when users had specific
questions about the datasets (e.g., if they were only concerned with whole record
sequences).

(2) Flattened. We found that in open-ended and unstructured exploration, the users do
not seem to care about what the metric is, just how important or distinguishing the
result is. A flat design displays all hypothesis results in a single list view, regardless
of metric or sequence type, and orders them by the significance and magnitude of
difference.

(3) Sequence. Some researchers may have questions about a specific sequence of events.
For these questions, it is best to group results by event sequence.

(4) Metric/flat list hybrid. In this view, the top 10 results for each metric are displayed.
A hybrid view will give a good overview of the most important features of the
dataset.

In our initial implementation, we organized results based on their category (Method
#1). However, interviews with domain experts and users indicated that in their anal-
yses, they didn’t always care which metric was significant; they wanted all the sig-
nificant results in one place, regardless of what type of metrics they corresponded to.
We found that Method #2 is the most flexible for most uses and that users can use
filters (Section 3) if they have specific questions dealing with a particular sequence or
metric.

Guideline 5: Provide Flexible Interactions for Parsing Results

Displaying large result sets presents challenges in parsing them. We provide three
interaction techniques for parsing the results. First, with so many hypotheses, not ev-
ery hypothesis will apply to the dataset or domain. Researchers might have different
priorities based on questions they already have. For example, some users might only
be concerned with whole record sequences, while others want to see patterns across
shorter subsequences. Some users might be concerned with only metrics dealing with
prevalence, whereas others are interested in both time and prevalence metrics. Fil-
tering and sorting provide flexibility by allowing users to manage their data based on
what is relevant to their questions.

Second, as users sort through the results, they might easily disregard some hypoth-
esis given their domain knowledge (e.g., results that are spurious correlations) and
would need some way to keep track of everything they care about or have hidden. For
this, we allow simple journaling options: starring, hiding, and annotating.

Lastly, when there are thousands of tested hypotheses, it is difficult for users to keep
track of how many hypotheses they have viewed, how many are left to view, and of
those results that are unviewed, which are significant. We solve this with a progress
bar that indicates users’ progress through the result set, so users feel comfortable that
all possibly meaningful results have been reviewed.
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Filtering is possible by:

—Event type (Figure 4(a)). Users can use the legend to select or deselect events they
are interested in. Any sequences containing deselected events will not be shown.

—Record coverage (Figure 4(b)). Each sequence is displayed as a dot on a scattergram
to display the number of records in each cohort that contains the sequence: the x-axis
is cohort 1 and the y-axis is cohort 2. Users can filter based on the sample sizes to
exclude results with very low or very high sample sizes. This can be used as a method
for quality control (e.g., removing results with an insufficient sample size) or as a
method for segmenting the results into more manageable pieces. For example, users
may want to evaluate more frequent sequences first (e.g., sequences with 50% or
more record coverage) before moving viewing less frequent sequences.

—Significance (Figure 4(c)). Users can filter based on three p-value groups: ≤ 0.01,
≤ 0.05, and > 0.05.

—Metric or sequence type (Figure 4(d)). Users can choose to see only time or prevalence
metrics. Similarly, users might be interested in only single events, whole record
histories, or partial subsequences.

Users can sort the results based on what they find most important (Figure 4(e)):

—Ratio and significance. Sort first by the significance level (p-value in three groups:
≤ 0.01, ≤ 0.05, and > 0.05.), then within each group, by the magnitude of the
difference (descending). This is the default sorting option.

—Significance only. Sorted by the raw p-value (descending).
—Ratio only. Sorted by the absolute ratio (ascending or descending)
—Cohort 1 value. Sorted by the absolute value in alpha (descending).
—Cohort 2 value. Sort by the absolute value in beta (descending).

Guideline 6: Provide Context to Highlight Statistical Uncertainty,
False Positives, and Error Rates

As users progress through the result set, it is difficult to understand if a result is
meaningful based on a single result, especially when dealing with event sequences. For
example, if patients visit the ICU after the emergency room more often in a cohort of
patients who died versus lived, it may only be significant because the “ICU” event only
occurs more often in the cohort of patients who died, so the added information of the
“Emergency” event is not helpful. Additionally, providing overviews of the distribution
of p-values allows the user to make more informed decisions about the significance of
particular results and which results are valid. We provide context by providing details
on demand, providing an overview of p-value distribution, and providing an overview
of the users’ progression through the result set.

Details on demand. Users are able to see the underlying data for a selected result.
Depending on the type of metric, users will see different information. Because metrics
dealing with prevalence are only a matter of percentage, all this data is shown in the
result snapshot and the details on demand don’t show any additional information.
For metrics that show an average (e.g., all time metrics and frequency metrics), the
details on demand show the exact distribution for all values (Figure 5). Additionally,
the details on demand show high-level statistics about the distribution: sample size
(n), average, minimum, maximum, and standard deviation.

P-value distribution. Based on the suggestions from two statisticians, we display
the distribution of p-values across the various metrics. Using a simple table (Figure 6),
users can understand whether the resulting distribution of p-values matches their
expectations for meaningful results. Using a simple table, users can gain an under-
standing of the distribution of p-values and put a specific p-value into context (as
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Fig. 4. Methods for sorting and filtering.
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Fig. 5. Users can view details about a result by clicking it. Results that correspond to comparing averages
(such as average duration or average frequency) will show the distributions of all the values and statistics
about the average, minimum, maximum, and standard deviation in both cohorts.

Fig. 6. A simple table displays the number of results at each significance threshold by metric type.

p-values are heavily dependent on sample size). This information, combined with the
other filtering controls (e.g., filtering sequences by a minimum required sample size),
helps users reduce false positives and errors.

Progression. When reviewing a large list of results, it is unclear to users when
everything has been reviewed, especially when they use filtering methods to view
smaller pieces of the results at a time. A simple progress bar at the right of the results
(Figure 7) shows the users’ progress through the result set. It is a heatmap where each
result is a single line and color indicates the following:

—Gray: result has been reviewed.
—Red: result has been calculated and has not been reviewed.

To make it more obvious that the user has not missed potentially significant results,
we also encode the p-value in the heatmap using a colored border:

—Black indicates a p-value ≤ 0.01.
—Gray indicates a p-value ≤ 0.05.
—White indicates p-value > 0.05.

The progress bar serves as the scroll bar and minimap for the result set. Users can
page through the data by scrolling along the progress bar. A thickened border indicates
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Fig. 7. A progress bar indicates the users’ progress through the result set. Gray indicates reviewed items
and red are not viewed. The border corresponds to the significance of the result (black is p < 0.01, gray for
p < 0.05, and white otherwise).

the portion of the data that is currently being viewed. The order in the progress bar
matches the order of the detailed results and is determined by the user, based on the
sort options provided.

6. CASE STUDIES

To investigate the strengths and limitations of CoCo as an automated cohort compar-
ison tool, we conducted case studies following the procedure of a Multidimensional,
Long-term In-depth case study (MILC) [Shneiderman and Plaisant 2006] with medical
researchers from three institutions. Two were performed with a preliminary version
of CoCo. The third was performed with the most recent version of CoCo, which was
revised based on feedback from the first two case studies.

6.1. Exploring Adherence to Advanced Trauma Life Support Protocol

We worked with medical researchers at Children’s National Medical Center who were
investigating trauma teams’ adherence to the Advanced Trauma Life Support (ATLS)
protocol and possible reasons for deviations. One analyst was a clinician and researcher,
and the other was a statistician. In a previous study [Carter et al. 2013], they found
that about 50% of resuscitations did not follow the ATLS protocol. As a follow-up, the
researchers’ were interested in the following questions:

(1) What percent of patients are treated in adherence to protocol?
(2) Are there distinguishing attributes (e.g., time of day, patient gender, team lead)

between protocol adherence and nonadherence?
(3) What are the most common deviations from the protocol?

After an initial training session and interviews to understand the researchers’ goals
and questions, we observed the researchers as they conducted a 3-hour session of data
exploration and analysis.

The dataset consisted of 181 patient records, with event types for the five steps in
the ATLS protocol: airway evaluation, listening for breath sounds, assessment of cir-
culation, evaluation of neurological status disability, and temperature control. Patient
attributes included injury severity score (ISS), the day of the week, length of hospi-
tal stay, time between notification and arrival at the hospital, and if the patient was
admitted to the hospital.

The dataset was stored as a single file. The researchers used EventFlow’s “group by
attribute” feature to split the dataset into separate cohorts based on attributes and
adherence to the protocol. Over the course of the 3 hours, the researchers split the
dataset six ways to load six different pairs of cohorts in CoCo as they explored different
hypotheses:

(1) Patients treated in adherence to the ATLS protocol versus those that showed any
deviation

(2) Patients admitted to the floor versus ICU (with discharged patients removed)
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(3) Patients who arrived with at least 5 minutes’ warning before arrival at the trauma
bay versus those who arrived with no warning (“now” patients)

(4) Patients with a high (above 25) versus low ISS
(5) Patients treated on the weekend versus on a weekday
(6) Patients treated during the day versus at night

In every comparison, the analysts began by narrowing the results by metric. The
analysts started by looking at the prevalence of single events to determine how often
they occurred. The analysts then looked at the most differentiating entire record se-
quences, because the subsequences were less informative about how the protocol was
followed. They would then make their way down the provided metrics list, in the order
that they appeared: most differentiating time gaps and then prevalence of record at-
tributes. They did not look at the prevalence of record attribute combinations for any
of the datasets.

For this dataset, the analysts expected to see that all records contained every event.
This finding was not observed for two of the comparisons: correctly treated patients
versus those with deviations and day versus night patients, with the latter of both
groups receiving the airway check significantly less than daytime patients. In the day
versus night group, the analyst also found that the “most differentiating sequence” was
the correct order, meaning that the nighttime patients were treated in the correct order
significantly less often than daytime patients. Additionally, patients treated at night
had more variance in the procedure, with 26 unique sequences in the 83 nighttime
patients versus 20 unique sequences in the 101 daytime patients. A possible reason for
this finding is that during the day, nurse practitioners perform these procedures, but
at night, less experienced junior residents are on call instead.

At times, the researchers saw that certain groups occurred only rarely in the cohorts
(fewer than 20 times), so the researchers decided not to consider the comparisons. For
example, among patients admitted to the ICU or floor, only about 80 patients remained,
making the sample sizes too small to run many of the significance metrics about event
types. As one analyst worked to confirm her expectations and check several hypotheses,
she found a surprising and potentially important result: about 25% more patients who
were admitted to the floor were “now” patients (p < 0.05), which led to splitting the
cohort into the third group: “now” versus “not now” patients.

In the closing interview, one analyst said, “We don’t need to solve everything with
EventFlow and CoCo. These tools let us explore the data and narrow our hypothe-
sis.” From these results, the analysts submitted abstracts about and presented these
findings at an internal symposium on trauma care. This first case study suggests that
CoCo can be effective for exploratory analysis and hypothesis generation.

6.2. Comparing Algorithms for Distinguishing Types of Radiation to the Bone

We also worked with pharmacists at the Department of Pharmaceutical Health Ser-
vices Research at the University of Maryland School of Pharmacy in Baltimore. In pre-
vious work, the researchers were interested in developing an algorithm using claims
data to differentiate between radiation delivered to the bone versus radiation delivered
to the prostate gland, because billing codes available in claims data do not distinguish
the site of radiation. Reliable measures for identifying the receipt of radiation to the
bone are important in order to avoid bias in estimating the prevalence and/or mortality
impact of skeletal-related events, including radiation to the bone.

Studies using healthcare claims employ various claims-based algorithms to identify
radiation to the bone and mostly condition on prior claims with a bone metastasis
diagnosis (billing) code [Sathiakumar et al. 2013; Nørgaard et al. 2014; Lage et al.
2008]. They developed three classification algorithms that were compared in pairs
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using CoCo and EventFlow to investigate the timing of possible radiation to the
bone among patients diagnosed with incident metastatic and nonmetastatic prostate
cancer. One algorithm was based on prior literature, while the other two were based on
insights gained from data visualization software. Based on clinical input regarding the
duration of palliative [Hartsell et al. 2005; Lutz et al. 2014] versus curative radiation,
the researchers investigated the length of radiation episodes and found differences
between cohorts in terms of the length of radiation. As expected, patients diagnosed
with metastatic disease received a shorter course radiation than patients diagnosed
with nonmetastatic disease.

The feedback on CoCo was positive and the team valued the opportunity to visually
compare cohorts of patients using summary statistics that pertained to the timing
and frequency of events. The graphical results were shared with clinicians on the
research team in order to determine whether the patterns were consistent with their
expectations. The researchers felt the meaning of metrics could be explained more
clearly; it was sometimes unclear what the x-axis represented and what statistical tests
were used. They also suggested always showing the event labels, particularly for single-
event metrics, to make understanding the icons a bit easier. The researchers expressed
a need to be able to sort the results with different factors, including by raw percentage
of values in each cohort. We implemented this feature before the formal case study.

6.3. Medication Adherence Patterns of Hypertension Patients

Researchers at the University of Maryland’s School of Pharmacy and School of Business
are analyzing the medication adherence patterns of patients on diuretics (i.e., are
patients taking their drugs as prescribed, in which combinations, what characterizes
the gaps between prescriptions, etc.) [Bjarnadottir et al. 2015]. In particular, they
are interested in the differences between high-cost versus low-cost diuretics patients
and want to know what patterns are representative of each group. Researchers became
overwhelmed as they sought to evaluate hypotheses that dealt with hundreds of unique
event sequences. This case study provides an illustrative example of the challenges
that researchers and analysts encounter and describes how the implementation of new
visualization interaction techniques for event sequence hypotheses in CoCo enables
the automatic analysis of two groups of records.

The data these researchers gathered consisted of prescription refill histories of five
drug classes commonly used to treat hypertension. The data spanned 1 year and con-
tained over 1 million patients. The data also included the total cost of all prescriptions
over the year. The researchers wanted to compare whether hypertension drug adher-
ence affected the cost that patients incurred over a year. In other words: could taking
medication as prescribed result in lower overall prescription costs?

Current methods for adherence analysis consist merely of calculating a Medication
Possession Ratio (MPR) [Andrade et al. 2006] or similar aggregated measures that do
not represent the diversity of patterns found in the data. The MPR for a predefined
period is calculated as

MPR = number of days prescribed
days elapsed over period

.

For example, if patients only filled one 30-day prescription over a period of 90 days,
their MPR is 30/90, or 1/3. This method oversimplifies a patient’s prescription history
into a single number, which may not provide an accurate representation of his or her
adherence behavior. A patient might refill prescriptions early when planning to leave
on vacation, thus leaving a larger-than-usual gap in his or her prescription history,
when in fact he or she was taking the medication regularly. Conversely, a patient who
switches to another medication after a recent prescription refill may have a history
that incorrectly indicates that the patient regularly took his or her prescription.
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Table I. Number of Hypotheses Generated by Metric
and Sequence Type

6.3.1. Data Processing. We report here only on the analysis of the adherence patterns
of patients who took medications from only one drug class: diuretics, which consisted of
a total of 113,401 patients. The dataset consisted of two event types: diuretic and gap,
where diuretic indicated the start time of a prescription and gap indicated the start
time of no medication usage. The patients were categorized into HIGH- versus LOW-
cost patients based on the distribution of prescription costs for the patients. Patient
costs ranged from $0 to $9,528 (USD). Most patients (55%) had no prescription costs
and the average cost was $25.39. We excluded patients with $0 costs and patients with
more than $380 (top %1), to exclude outliers.

The final datasets consisted of 3,958 patients (21,066 events, 720KB) categorized as
HIGH cost and 38,175 patients (144,433 events, 5MB) categorized as LOW cost.

6.3.2. Comparison Metrics. The metrics used were based on a subset of the taxonomy
presented in Section 4, where the following terms are defined:

Whole record sequence. A set of two or more events following one another that
compose an entire record history.
Subsequence. A set of two or more events following one another that compose a
piece of a record history.
Consecutive. A sequence of events that occur in uninterrupted succession.
Concurrent. Two or more events that occur at the same moment in time.

Specifically, the researchers were interested in:

—Record coverage of events, subsequences, and whole records
—Duration of co-occurring events
—Frequency of single events
—Occurrences of record-level attributes

6.3.3. System Use and Results. The final version of CoCo was used to compare prescrip-
tion patterns of high- versus low-cost patients. In total, CoCo generated results for a
total of 94 hypotheses. The hypotheses are broken down by metric and sequence type in
Table I. The analyst was a professor at the University of Maryland’s School of Business
and was assisted in using CoCo by a graduate researcher.

The analyst first used the Sequence Occurrence panel to review only results with
a sufficient sample size. The threshold was set at 10% of each cohort, or 395 in the
HIGH-cost group and 3,817 in the LOW-cost group, which reduced the number of
hypotheses to review to 24. Next, the remaining insignificant results (p > 0.05) were
removed using the Filter by Significance feature, leaving a more simplified display
of 21 results.

Finally, the results were Filtered by Sequence Length, to view only sequences of
length 1 (single events) or 2 (event pairs). Because there are only two event types in the
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Fig. 8. Final results and usage of drug pattern case study. Analysts used the Sequence Occurrence panel (c)
to control sample size, and the Filter panel (b) to control significance and sequence length. This resulted in
only 10 hypotheses (a) for the researchers to manually review.

dataset, longer sequences were just repetitions of length 2 or less, so this was all that
was necessary to view all unique patterns. Thus, there were 10 remaining hypotheses
to review in detail. The final result display and settings are shown in Figure 8.

The analysts used the Default Sorting, then evaluated the remaining hypotheses
one by one, using context information provided in the Details on Demand Panel.
This made it easy to conclude that high-cost patients tended to have longer se-
quences, with more gaps and prescription refills, whereas low-cost patients had shorter
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sequences, most commonly filling only a single prescription. Low-cost patients also had
significantly longer gaps between prescription refills. As a follow-up, analysts will
incorporate medical claims data to understand the more serious medical implications
of low medication adherence (such as heart attacks or stroke).

6.4. Case Studies in Nonmedical Domains

Additional case studies and targeted controlled studies will be necessary to character-
ize the effectiveness of CoCo. We are working with researchers in other fields, including
education (analyzing student enrollment patterns), web log analysis, and transporta-
tion data.

7. CONCLUSIONS AND FUTURE WORK

CoCo is a novel visual analytics tool with balanced integration of visual analytics
and statistics. CoCo’s benefits include better collaboration among colleagues, easier
intermediate results discussion, and meaningful outcome presentations. The imple-
mentation and use of CoCo with domain experts uncovers six design guidelines that
can be extended to other HVHT visual analytics tools. While we focus on case studies
in the medical domain, these techniques can be used in any event sequence dataset,
such as clickstreams or transportation reports with the inclusion of more metrics. More
work would be needed to understand how more dense event streams (e.g., with click-
streams) would affect the comprehensibility of the results. We have begun case studies
in the business and transportation domains.

CoCo’s interface and visualizations are extendable in many ways. First, the met-
rics implemented are already proving valuable, but many more metrics are possible.
Additional data mining and statistical techniques could be added to improve insight
discovery, such as anomaly detection to find unusual records or clustering to find simi-
lar records across the datasets. More work would be required to understand how these
controls could be more transparent to the user. It seems the interaction and visual-
ization techniques proposed in this work could be applied to traditional data mining
results (e.g., frequent patterns), but more research is required. As we continue devel-
oping CoCo, we will conduct controlled experiments to understand its strength and
weaknesses, as well as long-term case studies with domain experts to demonstrate
value with realistic problems and to guide our development.

We recognize that there are limitations to CoCo in terms of the complexity of datasets,
current emphasis on two cohorts, and the need for more user control on which events to
study. On the other hand, the fresh possibilities for statistical comparisons, supported
by visual presentations and an intelligent user interface, open many doors for further
research. We are encouraged by our initial feedback and we see many avenues for future
research that will empower medical and other researchers as they conduct exploratory
data analysis on temporal event sequences.
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Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining association rules between sets of items
in large databases. In Proceedings of the 1993 ACM International Conference on Management of Data
(SIGMOD’93). ACM, New York, NY, 207–216.

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 1, Article 9, Publication date: March 2016.



9:22 S. Malik et al.

Susan E. Andrade, Kristijan H. Kahler, Feride Frech, and K. Arnold Chan. 2006. Methods for evaluation
of medication adherence and persistence using automated databases. Pharmacoepidemiology and Drug
Safety 15, 8 (2006), 565–574.

Stephen D. Bay and Michael J. Pazzani. 2001. Detecting group differences: Mining contrast sets. Data Mining
and Knowledge Discovery 5, 3 (2001), 213–246.

Yoav Benjamini and Daniel Yekutieli. 2001. The control of the false discovery rate in multiple test-
ing under dependency. Annals of Statistics 29, 4 (August 2001), 1165–1188. DOI:http://dx.doi.org/
10.1214/aos/1013699998

Viv Bewick, Liz Cheek, and Jonathan Ball. 2004. Statistics review 12: Survival analysis. Critical Care 8, 5
(2004), 389–394. DOI:http://dx.doi.org/10.1186/cc2955

Margret Bjarnadottir, Sana Malik, Eberechukwu Onukwugha, Tanisha Gooden, and Catherine Plaisant.
2015. Understanding adherence and prescription patterns using large scale claims data. Pharmacoeco-
nomics 34, 2 (Feb. 2016), 169–79. DOI:10.1007/s40273-015-0333-4

Elizabeth Carter, Randall Burd, Megan Monroe, Catherine Plaisant, and Ben Shneiderman. 2013. Using
eventflow to analyze task performance during trauma resuscitation. In Proceedings of the Workshop on
Interactive Systems in Healthcare (2013).

David Collett. 2003. Modelling Survival Data in Medical Research, 2nd ed. Chapman and Hall/CRC Press.
Olive Jean Dunn. 1961. Multiple comparisons among means. Journal of the American Statistical Association

56, 293 (1961), 52–64.
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