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People use recommender systems to improve their decisions; for example, item recommender systems help
them find films to watch or books to buy. Despite the ubiquity of item recommender systems, they can be
improved by giving users greater transparency and control. This article develops and assesses interactive
strategies for transparency and control, as applied to event sequence recommender systems, which provide
guidance in critical life choices such as medical treatments, careers decisions, and educational course selec-
tions. This article’s main contribution is the use of both record attributes and temporal event information as
features to identify similar records and provide appropriate recommendations. While traditional item recom-
mendations are based on choices by people with similar attributes, such as those who looked at this product
or watched this movie, our event sequence recommendation approach allows users to select records that
share similar attribute values and start with a similar event sequence. Then users see how different choices
of actions and the orders and times between them might lead to users’ desired outcomes. This paper applies a
visual analytics approach to present and explain recommendations of event sequences. It presents a workflow
for event sequence recommendation that is implemented in EventAction and reports on three case studies in
two domains to illustrate the use of generating event sequence recommendations based on personal histo-
ries. It also offers design guidelines for the construction of user interfaces for event sequence recommendation
and discusses ethical issues in dealing with personal histories. A demo video of EventAction is available at
https://hcil.umd.edu/eventaction.
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1 INTRODUCTION

Recommender systems are widely used to assist people in making decision; for example, item
recommender systems help customers to find films to watch or books to buy. Despite the ubig-
uity of item recommender systems, they can be improved by giving users greater transparency
and control. This article develops and assesses interactive strategies for transparency and control,
as applied to event sequence recommender systems, which can provide guidance in critical life
choices such as medical treatments, careers decisions, and educational course selections. Times-
tamped event sequence data has become ubiquitous with the development of mobile devices, elec-
tronic communication, and sensor networks. It can be collected from social network activities,
online clickstreams, electronic health records, and student academic activities. Event sequence
recommender systems use archives of similar event sequences, such as patient histories or student
academic records, to give users insight into the order and timing of their choices, which are more
likely to lead to their desired outcomes.

Imagine the following scenario: I am a student at the end of my second year of graduate school.
I wish to become a professor and wonder what jobs other students like me got. Then, I wonder
what those who ended up being professors did in their last 2 years of studies. Did they go on
internships? When and how many times? I know that publishing is important, but when did they
typically publish papers? Does it seem better to start early or all at the end? Did they get a masters
on the way? Did they work as teaching assistants? Early on or later toward the end? So I meet with
my department’s graduate advisor. He pulls a set of students’ records from the campus archives
who are similar to me based on their first 2 years of studies. He explains to me their outcomes in
terms of the time it took to graduate and job type. Then, the advisor looks at those who became
professors, we review the recommendations together and discuss an action plan—combining the
wisdom of the advisor and the system’s recommendations based on events and the orders and
times between them identified as correlated with becoming a professor.

1.1 Problem and Approach

The research question addressed in this work is: What combination of algorithmic analysis and in-
teractive visual exploration can augment analysts’ ability to find similar records, review recommended
actions, and make action plans to improve outcomes?

To find a group of records with features in common with a seed record, one approach is to specify
a query and the results are records that exactly match the query rules. Extensions to standard query
languages (e.g., TQuel [69] and T-SPARQL [25]) have been introduced to ease the task of querying
temporal data. Such temporal queries typically consist of elements such as the required events,
temporal relationships between the events, and attribute ranges of the events or records.

The temporal query approach is useful when users have prior assumptions about the data so
as to specify query rules. However, it is unsuitable to be applied alone for the task of finding
similar records—only a few or zero results will be found if many query rules are specified to fully
characterize the seed record; or if only a few rules are used, the results may be quite dissimilar to the
seed record in aspects outside the query rules. In addition, precisely formulating temporal queries
remains difficult and time-consuming for many domain experts. Our approach enables users to
find and explore similar records using both record attributes and temporal event information as
similarity criteria. To encourage engagement and inspire users’ trust in the results, it provides
different levels of controls and context for users to adjust the similarity criteria.

Understanding how different sequences of events lead to different outcomes is an important task
in event sequence analysis, leading to hypotheses about causation. For example, OutFlow [82]
uses a network structure to aggregate similar event sequences into progression pathways and
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summarizes the pathways’ possible outcomes. TreatmentExplorer [20] provides a novel graphical
interface for presenting the outcomes, symptoms, and side effects of treatment plans. CoCo [43]
helps analysts compare two groups of records (e.g., with different outcomes) and uses high-volume
hypothesis testing to systematically explore differences in the composition of the event sequences
found in the two groups.

These tools visualize the outcomes of a given set of records, enabling users to see the outcomes
and progression pathways associated with these records. Our approach is to extend these works
by providing recommended sequences of temporal events that might help achieve users’ desired
outcomes. It also allows users to define personalized action plans and provides feedback on the
probability of success. In addition, while most existing tools assume a binary outcome, our ap-
proach enables users to explore multiple outcomes.

1.2 Contributions

In this work, we introduce EventAction, an interactive prescriptive analytics system and user in-
terface to assist users in making action plans and to raise users’ confidence in the action plans. The
main contribution of this work is the use of both record attributes and temporal event information
as features to identify similar records and provide appropriate recommendations. While traditional
item recommendations are generated based on choices by people with similar attributes, such as
those who looked at this product or watched this movie, the event sequence recommendation ap-
proach allows users to select records that share similar attribute values and start with a similar
event sequence, and then see how different choices of actions and the orders and times between
them might lead to users’ desired outcomes.

Our preliminary work designed interface components for finding similar records [17, 18] and re-
viewing recommendations of action plans [16]. This article provides a comprehensive final review
of the entire EventAction project with the following new contributions:

— A thorough literature review of existing techniques, software tools, and ethical issues re-
lated to event sequence recommendation.

— A description of the final EventAction system that revises and integrates the interface com-
ponents from our preliminary work [16-18] and provides an automatic sequence recom-
mendation algorithm to reduce users’ effort in using the system. The integrated system
supports a systematic analytical workflow for event sequence recommendation that will be
applicable in diverse applications.

— A report on three case studies in two domains that provide evidence of the effectiveness of
generating event sequence recommendations based on personal histories.

— A set of five design guidelines for the construction of event sequence recommendation user
interfaces and three usage guidelines for mitigating the ethical issues in dealing with per-
sonal histories.

2 BACKGROUND AND RELATED WORK

We summarize existing techniques and software tools that can contribute to our goal of enabling
users to generate recommendations of event sequences that might lead to their desired outcome.
Our work is particularly inspired by previous research on recommender systems, similarity mea-
sures, event sequence analysis, and ethical issues in information systems.

2.1 Recommender Systems

When making decisions, people often lack sufficient experience or competence to evaluate the po-
tentially overwhelming number of alternative choices. Recommender systems tackle this challenge
by providing personalized suggestions for items likely to be of use to a user [60].

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 21. Publication date: August 2019.



21:4 F. Du et al.

Recommendation Techniques. Previous work identified four major classes of recommendation
techniques [10]. The two most popular ones are content-based, which recommends items similar
to what the users liked in the past [12], and collaborative filtering, which finds other users with
similar tastes and recommends items they liked to the current user [39, 59, 63]. When large-scale
user profiles are available, demographic techniques can be used to generate user-specific recom-
mendations based on common patterns in the population [34]. When domain knowledge about
item features are available, knowledge-based techniques can estimate how much an item meets a
user’s needs and identify the best matches [8, 61].

In practical applications, multiple recommendation techniques are often combined to encourage
the strength and diminish the weakness [13, 49]. In addition, recent advances reveal that it is
important to incorporate temporal information into the recommendation process. For example,
seasons and opening hours are important context for recommending tourist locations [42] and
users’ daily activity patterns should be considered when recommending social events [41].

Evaluating Recommender Systems. Approaches for evaluating recommender systems differ de-
pending on the goals of an evaluation. Early work in this field primarily focused on the accuracy
of recommendation algorithms. For example, Herlocker et al. [28] used mean absolute error to
measure the deviation between preference ratings predicted by algorithms and provided by users.
Shardanand and Maes [66] discovered that error of the extremes can be valuable and measured
separately large errors between the predicted and user ratings.

Follow-up research found accurate predictions crucial but insufficient for developing recom-
mender systems that can actually influence the behavior of users. A variety of measures regarding
user satisfaction have been introduced to fill this gap. For example, McNee et al. [48] built a ci-
tation recommender system for research papers and measured the novelty of the recommended
references to users. In an experiment on music recommender systems, Sinha and Swearingen [68]
examined the role of transparency by measuring recommenders’ ability to explain the recommen-
dations to users. In addition, commercial recommender systems also quantify user satisfaction
with the number of product purchases and returns [22, 39, 41].

Opportunities. Our recommendation approach extends the collaborative filtering technique since
we also generate recommendations by referring to archived records that share similar features with
the seed record. However, compared to traditional recommender systems that recommend items
such as books to read or social events to attend, our article focuses on recommending sequences
of temporal events. Here, each event can be treated as an item and two additional dimensions
need to be considered: (1) the combinations of events and their orders, and (2) the timings of the
events. In addition, we develop a prescriptive analytics system designed to present and explain
the recommendations. It augments traditional recommender systems by guiding users to define a
personalized action plan associated with an increased probability of success.

2.2 Similarity Measures

Similarity is a fundamentally important concept in many research domains [2]. For example, in
bioinformatics for gene sequence alignment [35] or protein clustering [38], in linguistics for ap-
proximate string matching [52] or text categorization [11], in computer vision for face recogni-
tion [62], and in healthcare for identifying similar patients [73, 81].

Multidimensional Data. Data scientists investigated how to measure the similarity between
two multidimensional data cubes. For example, Baikousi et al. [5] conducted user studies to
explore various distance functions to identify the preferred measurement between the values
of a dimension and between data cubes. Spertus et al. [70] presented an empirical evaluation
of similarity measures for recommending online communities to social network users, where
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the effects of the measures are determined by users’ propensity to accept the recommendation.
Sureka and Mirajkar [71] extensively studied different similarity measures for online user profiles
and discovered that no single similarity measure could produce the best results for all users. They
suggested using different similarity measure for different users.

We extend existing work on perceived similarity and study temporal data, which is an important
component of people’s healthcare histories, academic records, and online profiles. Our interviews
confirmed that choices of similarity measures rely on users’ preferences and analysis goals, and
our user studies revealed that providing controls and context will increase users’ engagement and
trust in similarity search results.

Temporal Data. To find records of event sequences with features in common with a seed record,
one approach is to specify a query and the results are records that exactly match the query rules.
Extensions to standard query languages (e.g., TQuel [69] and T-SPARQL [25]) have been intro-
duced to ease the task of querying temporal data. Temporal queries typically consist of elements
such as the required events, temporal relationships between the events, and attribute ranges of the
events or records. Precisely formulating temporal queries remains difficult and time-consuming
for many domain experts. Visual tools have been developed to further ease the task by enabling
users to interactively specify query rules and providing visual feedback to facilitate the iterative
refinements of the queries (e.g., (s|qu)eries [87], COQUITO [33], and EventFlow [51]).

The temporal query approach is useful when users have a prior assumption about the data such
as hypotheses or domain knowledge, so as to specify the query rules. However, it is unsuitable to
be applied alone for the task of finding similar records—only a few or zero results will be found
if many query rules are specified to fully characterize the seed record, or if only a few rules are
used, the results may not be similar to the seed record in aspects outside the query rules.

An alternative approach to finding similar records is to start with the seed record, determine
useful patterns, and search for records with similar patterns. Mannila and Ronkainen [44] pre-
sented a model for measuring the similarity of event sequences. The model computes an edit dis-
tance based on three transformation operations at the event level, including insert, delete, and
move. This approach can preserve the order of the matched events and performs better when the
number of operations is small. Match & Mismatch measure [85] introduces a similarity score that
emphasizes the time difference of matched events and the number of mismatches, which supports
matching without preserving the order. In addition, a visual interface was also provided to show a
ranked list of similar records and allow users to adjust parameters. Recent work [77, 78] describes
more advanced similarity measures for specific domains and problems. In addition to event se-
quences, techniques for finding similar records have been developed in other domains such as the
similarity-based data-driven forecasting for time series [9].

Our work extends existing similarity metrics for temporal data and enables users to find and
explore records that are similar to a seed record using both record attributes and temporal event
information. To encourage engagement and inspire users’ trust in the results, it also provides dif-
ferent degrees of controls and levels of context that allow users to adjust the similarity criteria.

2.3 Event Sequence Analysis

Data that contains temporal information can be modeled as sequences of temporal events, which
appear in a wide range of domains, from engineering, to social media, finance, and healthcare.
Techniques for representing event sequences and extracting insights from them are crucial to de-
veloping novel solutions and being increasingly studied.

Visual Representations. Starting with LifeLines [58], early research on event sequence visualiza-
tion focuses on depicting the medical history of a single patient (e.g., Bade et al. [4], Harrison et al.
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[27], and Karam [32]). These tools allow users to visually inspect trends and patterns in a record
by showing detailed events. LifeLines2 [79] extends this approach to multiple records but does not
scale well when displaying a large number of records in a stacked manner.

Techniques have been introduced to handle large sets of records by offering time- or category-
based aggregations. LifeFlow [83] introduces a method to aggregate multiple event sequences by
combining them into a tree structure on an alignment point. Likewise, OutFlow [82] combines
multiple event sequences based on a network of states. EventFlow [50] extends LifeFlow’s concept
to interval events and introduces simplification strategies to deal with large data volumes and pat-
tern variety [19]. DecisionFlow [24] provides supports for analyzing event sequences with larger
numbers of categories.

Our visualization designs are inspired by prior work and adapted to the needs of showing both
detailed histories of individual records and activity summaries of groups.

Frequent Sequence Mining. One popular research topic in temporal data mining is discovering
frequently occurring sequential patterns, which can generate novel insights and drive decision
making [36]. Many techniques have been developed to support this task and the main challenge
is that a combinatorially explosive number of intermediate subsequences need to be examined.
Early work mainly focused on developing efficient and automatic algorithms. A priori-like [1, 45]
approaches assume that frequent patterns cannot contain any non-frequent sub-patterns. Given
a percentage prevalence threshold, they start by collecting frequent patterns containing only one
frequent event and then iteratively grow the patterns by appending new events. The process stops
when no more frequent patterns can be found. These approaches become less efficient as the pat-
tern volume or length grows.

Follow-up work addressed this issue and improved the procedure. For example, PrefixSpan [55]
and SPADE [86] reduce the number of data scans, and SPAM [3] uses a bitmap representation to
encode the event sequences and accelerates the mining computations with bitwise operations. Re-
cently, Perer and Wang [57] introduced a visual interface for these black-box automatic algorithms.
It enables users to explore the results of frequent sequences at different levels of details.

Frequent sequential patterns can provide guidance for users to identify important activity pat-
terns, especially for patterns that occur frequently in archived records having the seed record’s
desired outcome. In our article, we will explore frequent sequence mining techniques and apply
them in the system.

Outcome Analysis. Understanding how different sequences of events lead to different outcomes is
an important task in event sequence analysis, leading to hypotheses about causation. OutFlow [82]
uses a network structure to aggregate similar event sequences into progression pathways and
summarizes the pathways’ possible outcomes. Its application for electronic medical records, Care-
Flow [56], allows doctors to analyze treatment plans and their outcomes for patients with certain
clinical conditions. TreatmentExplorer [20] provides a novel graphical interface for presenting
the outcomes, symptoms, and side effects of treatment plans. CareCruiser [26] enables doctors to
retrospectively explore the effects of previously applied clinical actions on a patient’s condition.
CoCo [43] helps analysts compare two groups of records (e.g., with different outcomes) and uses
high-volume hypothesis testing to systematically explore differences in the composition of the
event sequences found in the two groups. MatrixWave [88] allows the exploration and compari-
son of two sets of event sequences with different outcomes by displaying the event sequences in
a matrix and showing their differences at each step.

These tools visualize the outcomes of a given set of records, enabling users to see the outcomes
and progression pathways associated with these records. Our approach is to extend these works
by providing recommended sequences of temporal events that might help achieve users’ desired

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 21. Publication date: August 2019.



A Visual Analytics Approach to Explainable Recommendation for Event Sequences 21:7

outcomes. It also allows users to define personalized action plans and provides feedback on the
probability of success. In addition, while most existing tools assume a binary outcome, our ap-
proach enables users to explore multiple outcomes.

2.4 Ethical Issues in Information Systems

While information technology offers powerful tools that can serve to improve people’s lives, the
same technology may also raise ethical issues such as threatening our privacy or providing inac-
curate information that misleads our decisions. Mason [46] summarizes four types of ethical issues
in information systems: privacy (what information to reveal), accuracy (who is responsible for the
authenticity and accuracy), property (who owns information), and accessibility (what information
can a person or an organization obtain). Similarly, Nissenbaum [53] introduces the concept of ac-
countability in computing to ensure that harms and risks caused by technology can be answered
and handled.

In our article, by working with real users and domain professionals, we review the ethical issues
in dealing with personal histories. Specifically, we discuss (1) what the potential biases are in
using histories of similar others to provide recommendations, (2) what the potential dangers are
in allowing advisees to use the system alone, and (3) how to balance the opinions of advisors and
the recommendations generated from data, especially when there is a contradiction. We discuss
these ethical issues and propose possible solutions.

3 DESCRIPTION OF THE USER INTERFACE

Starting with a current seed record for review and a set of archived records, EventAction provides
controls and visualizations for finding a group of archived records that are most similar to the
seed record. Each record is represented as a set of record attributes (e.g., age and major) and a
sequence of events, where each event belongs to a particular event category. Outcomes are often
defined by the inclusion of certain events in a record, for example, events representing students’
first placements. EventAction estimates the seed record’s potential outcomes based on the out-
come distribution of the similar archived records, and recommends actions by summarizing the
activities of those who achieved the desired outcome. Recommended action plans for the seed
record can be adjusted and EventAction provides immediate feedback by showing how the plan
affects the outcome estimation. This section describes the user interface and analytical workflow
of EventAction.!

3.1 Design Process

The design process of EventAction was inspired by the nine-stage framework proposed by
Sedlmair et al. [64]. We chose a specific application domain (student advising) to drive a design
study consisting of two stages. In the first stage, we designed an initial prototype of EventAction
that uses a black-box algorithm to find similar records and allows users to specify action plans
with guidance and feedback generated [16]. Then, we designed interfaces and visualizations that
provide controls and context for users to interactively find and explore records that are similar
to a seed record [17, 18]. Each stage roughly matches the learn (visualization literature), discover
(tasks and needs), design (visual, interaction, and algorithm), implement (prototypes), deploy (to
domain expert and gather feedback), reflect (on designs and refine guidelines), and write (design
study paper) stages in that framework. In this article, we report the final design of EventAction,
which revises and integrates the visual components designed in our previous studies and an

IEventAction is available for licensing. To request a review copy of EventAction, contact plaisant@cs.umd.edu.
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Fig. 1. An overview of the EventAction user interface. Interface components are organized into two tabs:
(a) for reviewing recommendations of action plans and (b) for finding similar records. (c) The display expands
progressively as users request more controls.

automatic sequence recommendation algorithm. We also conducted additional case studies in
marketing and healthcare domains to further evaluate and refine the system prototype.

3.2 Interface Overview

The EventAction user interface consists of 10 coordinated interface components, supporting a
seamless analytical workflow for developing action plans to achieve the desired outcome. These
components are organized into two tabs: one for finding similar records (Figure 1(b)) and the other
for reviewing recommendations of action plans (Figure 1(a)). Users can switch between these tabs
during the analysis.

3.3 Finding Similar Records

Seed Record Timeline. The seed record’s history of activities is shown as an aggregated timeline in
a timetable (Figure 2(a)), where each row represents an event category and each column represents
a time period. Events in each table cell are aggregated and represented as a square in gray and the
number of event occurrences is represented by the size of the square. Users can specify temporal
patterns of the seed record on the timeline and use them as similarity criteria for the search. In
Figure 2(a), a temporal pattern has been specified based on the seed record’s research activities
(no papers in the first 2 years and late selection of an advisor). The temporal criteria are added as
glyphs in the criteria control panel. Users can hover on a glyph to highlight the temporal pattern
and the focused criterion in other visualizations in an orange color.

Similarity Criteria Controls. All available criteria are shown. Categorical criteria (such as major)
and numerical criteria (such as GPA) are automatically extracted from the available data, and tem-
poral criteria are added when specified by users. Each criterion is displayed as a rectangular glyph
(Figure 2(b)) showing its name, the value for the seed record, and the distribution of all archived
records. Distributions of archived records are shown as histograms where the height of the bars
represents the numbers of records. For categorical and numerical criteria, the bars are exact values
or ranges of values, respectively. For temporal criteria, the bars are ranges of pattern difference
scores. Records with a zero difference score have exactly the same specified temporal pattern.
Users can hover on a temporal criterion to highlight the corresponding temporal pattern in the
seed record timeline. Users can select how the criterion is to be used: “Ignore” (x), allow “Close
Match” (~), or require “Exact Match” (=). A tolerance range can also be defined to treat multiple
categorical values or a range of numerical values as an equivalent of the value of the seed record
(e.g., treat M.S. and Ph.D. equally or set a GPA range between 3.2 and 3.7). The weight of each
criterion can also be adjusted. As users adjust the controls, the results are updated immediately
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Fig. 2. Four basic components for finding similar records and adjusting the peer group: (a) seed record time-
line, (b) similarity criteria controls, (c) similarity distribution, and (d) similar record distribution. In this ex-
ample, a total of eight similarity criteria are used, including one temporal criterion (Paper & Advisor). The
mouse cursor is hovering on that user-defined temporal criterion representing “no papers in the first two
years and late selection of an advisor.” This criterion and the corresponding temporal pattern are highlighted
in orange. Photos of the seed records are authorized for using in mock-ups: https://randomuser.me.

and reflected in all visualizations. Users can reorder the criteria by dragging the glyphs. Changes
in order are reflected in other interface components but do not affect which records are included
in the result set.

Similarity Distribution. Based on the criteria settings, a similarity score is computed for each
archived record and a histogram of the scores is displayed (Figure 2(c)). Users can adjust the portion
of the histogram that is selected for the results, i.e., the peer group. In Figure 2(c), the top 12% most
similar records (64 out of 500) are selected. Since the similarity scores change when users adjust the
criteria controls, we provide three options to help users keep track of the record selection (shown
as radio buttons in the toolbar): the “by Top N” option keeps users’ selection of a fixed number of
most similar records, the “by Percentage” option keeps the selection of a fixed percentage of most
similar records, and the “by Similarity” option selects records whose similarity scores are above a
user-defined threshold.

Similar Record Distribution. A separate view shows barchart distributions of criteria values
of (only) the similar records (Figure 2(d)). The layout of the barcharts is consistent with the
layout of the glyphs of the criteria control panel and the color of the bars is consistent with other
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Fig. 3. Advanced visualization components for reviewing and refining peer groups: (a) LikeMeDonuts rep-
resenting criteria values of the similar records as a hierarchical tree, (b) Ranking Glyph providing a compact
overview of the similar records ranked by similarity, (c) History Heatmap showing the popularity of the tem-
poral events among similar records, and (d) ranked list of similar records, displaying detailed information of
individual records.

components of the interface. Users can hover on a single bar to review the criterion range of values
and number of records, and hover on a bar chart to highlight that criterion in other visualizations.

Ranked List of Similar Records. The individual records are displayed in a ranked list, showing
the attribute values and the event history for each record (Figure 3(d)). For privacy, this panel of
individual records will need to be hidden when users do not have proper permission. Part of the
overviews or the labels may also need to be hidden if the number of records included is too low.

LikeMeDonuts. LikeMeDonuts is a radial space-filling visualization that shows the criteria values
of the similar records as a hierarchical tree (Figure 3(a)). An image of the seed record is placed at
the center, anchoring the display on that person. Each donut ring represents a criterion (and one
level of a tree structure). Criteria set to “Ignore” in the similarity criteria controls are not displayed.
Ring sectors in bright green represent the proportion of people in the group whose values exactly
match the value of the seed record, sectors in dark green represent those within the user-specified
tolerance ranges, and gray sectors represent those outside tolerance ranges.

A thin additional partial ring is shown outside the donuts to highlight the records that are
most similar to the seed record (based on the selected criteria). The arc is in bright green if the
record’s criteria values are all exactly matched, or in dark green if all criteria values are within
range. When integrated into the larger interface, in Figure 3(a), we use the empty corner space
to display contextual information and controls. The top left shows the number of similar records
being reviewed and the total number of archived records. The color legend is at the bottom right.
Controls for interactively editing the peer group within the LikeMeDonuts are at the top right
corner.

A set of control buttons is provided for editing the peer group at the record level. At the start, the
buttons are disabled. Clicking on ring sectors will select a record subset and enable the “Remove
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Selected Records” button. As users make edits, the “Undo,” “Redo,” and “Reset” buttons become
available. The removed records are filtered out and excluded in other visualizations immediately.

Ranking Glyph. The role of the Ranking Glyph is to help users understand how similarities and
differences for each criterion evolve as they go down the ranked list of similar records. Each glyph
represents a criterion and each horizontal bar within a glyph represents a record (Figure 3(b)).
Records are ranked by their similarity to the seed record in all glyphs, with the most similar ones
at the top and least similar ones at the bottom. The same consistent color scheme is applied. Bright
green bars indicate that the criteria value of those records are identical to the value of the seed
record while dark green bars represent records with criteria values within user-specified tolerance
ranges. Records with criteria values outside tolerance ranges are shown as gray bars. The glyphs
are arranged in the same layout as the criteria controls (Figure 2(b)) and the record ranked list
(Figure 3(d)). Hovering on a glyph highlights the focused criterion in other visualizations. Records
selected in other visualizations will be highlighted in orange in the Ranking Glyph, revealing their
positions in the ranked list.

History Heatmap. The History Heatmap summarizes the temporal events of the entire peer group
or any selected subset of records. Each row of the timetable represents an event category and each
column represents a time period (Figure 3(d)). In the example of students’ academic records, each
time period is a semester (e.g., Spring, Summer, and Fall). The darker the color of a cell the more
events occurred in the time period, revealing hot spots of activity in black (such as unsurprisingly
“Start” in the first semester) and unpopular event in white (e.g., “Advanced Course” in Summer).
When users select a subset of the similar records in other visualizations (e.g., by clicking on a ring
sector in LikeMeDonuts), their activities will be shown in the history Heatmap using an orange
color gradient.

3.4 Reviewing Recommendations of Action Plans

Outcome Estimation. The outcome distribution view (Figure 4(b)) summarizes the estimated out-
comes of the similar records (thick bars) and all archived records (thin bars). It provides an esti-
mation of the most likely outcome of the seed record and the likelihood. Users can select a desired
outcome using the radio buttons. They can also compare the seed record’s likelihood of achieving
the desired outcome against the baseline of all records.

Activity Summary and Action Plan. The activities of the similar records are summarized and
shown as part of the timeline of the seed record (Figure 4(a)). A darker color indicates this activity is
more popular in this time period. Users can keep only records having the desired outcome and use
their activity patterns as guidance for specifying the action plan. By analyzing the event sequences
of those similar records who have achieved the user’s desired outcome, EventAction recommends
a representative action plan to the user, which is displayed on top of the seed record timeline on
the future side (Figure 4(c)). Users can review the recommended plan and choose to (1) follow the
plan without modification, (2) tune the plan to better fit their needs, or (3) use the recommended
plan as a reference and design their own plans from scratch. To tune the recommended plan, users
can click to add events to the timetable or change their numbers of occurrences. When the plan
is being changed, EventAction will update the outcome estimation taking the planned events into
consideration (Figure 4(d)). Users can review how the current plan affects the outcome likelihoods
in real time.

3.5 Analytical Workflow

EventAction’s analytical workflow (Figure 5) was developed and refined based on our observa-
tions of user behaviors during empirical studies and case studies. The typical workflow starts
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Fig. 4. Components for reviewing and tuning recommendations of action plan: (a) Activity history of the
seed record (gray squares on the left) and activities summary of similar records (heatmap on the right);
(b) EventAction’s estimation of the outcomes of the similar records (thick bars) and all archived records (thin
bars) with desired outcome highlighted in green; (c) recommended action plan (gray squares on the right);
(d) an updated estimation incorporating the action plan (shown as triangles above the bars). In this example,
the recommended plan emphasizes research activities such as RA (research assistantship) and paper. It also
suggests taking some advanced courses.
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Fig. 5. The analytical workflow of EventAction. The typical workflow starts from selecting a seed record and
the first step is to find a group of similar records. After submitting the similar records, a recommendation
model will be computed and users can review a recommended action plan. Then, users can further refine the
plan by directly editing the plan using the activities of similar records as a reference or refining the similar
records to generate an updated recommendation.

from selecting a seed record and the first step is to find a group of similar records. After sub-
mitting the similar records, a recommendation model will be computed and users review a rec-
ommended action plan. Then, users further refine the plan by directly editing the plan using the
activities of similar records as a reference or refining the similar records to generate an updated
recommendation.
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We also observed many small deviations in the workflow during user studies and case studies.
For example, some users changed the order of the steps (e.g., reviewing the recommended plan
before refining similar records), some skipped certain steps (e.g., skipped reviewing and refining
similar records), and some started refining similar records by keeping only identical records while
some started by showing all records. How users perform the analyses depends on many factors
such as their familiarity with the interface, the duration of the analysis, and specific datasets and
analytical goals. To satisfy different users’ needs, EventAction supports flexible analytical work-
flows. For example, EventAction allows users to skip the step of finding similar records and start
by reviewing the recommended plan. In this case, the recommendation will be generated using a
set of records retrieved with default similarity criteria.

3.6 Reflections on the Final EventAction Design

The final EventAction system combines 10 preliminary interface components for finding similar
records [17, 18] and reviewing recommendations of action plans [16]. The overall integration went
through a dozen iterations over a 6-month period, during which we developed and demonstrated
prototypes to our case study partners, gathered their feedback, and discussed improvement plans.

To simplify the interface, we added supports (Figure 1(c)) for expanding the displays progres-
sively so that novice users can start with basic functionalities: the “Basic” configuration only shows
the results without any controls, the “Simple” configuration allows users to “Ignore” some criteria
using the Similarity Criteria Controls (Figure 2(b)), and the “Complex” configuration provides all
available controls and shows LikeMeDonuts (Figure 3(a)).

To cope with complex datasets, we added the capability of using a power scale for the sizes of
the squares in the Record Timeline (Figure 3(d)), which improves the visibility of minor categories
when the numbers of events in different categories are imbalanced. We also provided options to
group the event categories (e.g., interventions, reactions, and outcome as in Figure 8(a)), so that
users can easily differentiate among types of activities and focus on one group at a time when the
number of event categories is large.

Finally, we propagated a simplified color scheme to all the visualizations: bright green for exact
match, dark green for close match, gray for mismatch, and orange for highlighting. The consistent
use of green colors helps users quickly identify similar records across all the interface components.
We also added brushing and linking capabilities to coordinate all the visualizations so that users
can easily select records of interest from one view and inspect them in others.

4 DESCRIPTION OF THE SYSTEM BACKEND

EventAction’s system backend consists of a data pipeline for finding similar records and an au-
tomatic algorithm for generating event sequence recommendations. In this section, we describe
these two components and report on an experiment evaluating the data pipeline’s performance
on large testing datasets.

4.1 Data Pipeline for Finding Similar Records

This section describes the data pipeline of EventAction for finding similar records, which needs to
execute upon every similarity criteria adjustment and has a great impact on the system’s perfor-
mance and interactive latency [40]. The data pipeline consists of six steps, from loading the raw
data to showing the results of similar records. The raw data are two tab-delimited text files, one
for temporal events and the other for record attributes. Each record (identified by a unique Record
ID) is represented as a sequence of events. Each event belongs to a particular Event Category and
is assigned a Timestamp. Descriptive information of each record is carried in attributes and stored
as a pair of Attribute Name and Attribute Value. We first describe how EventAction processes the
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data through each step of the pipeline. Next, we provide more details about the distance score
computation. Finally, we report on an experiment evaluating the performance of the pipeline.

4.1.1 Data Pipeline.

Data Loader. After the analysts load the raw data (identified by Data Name), EventAction creates
record instances to organize the event and attribute information of each record and stores them in
memory. In each record instance, the event sequence is structured as an Array and the attributes are
structured as a HashMap. Record instances are indexed by Record IDs so that they can be retrieved
in constant O(1) time. At this step, users need to specify the Seed Record of their analyses.

Time Filter. At this step, users define a time window of the history, for example, from start school
until the end of the second school year. EventAction will extract events within this history window
from each record and use them for finding similar records. The time filter iterates over the events
of all archived records in O(E) time, where E is the total number of events in the dataset.

Criteria Filter. By default, for each similarity criterion marked as “Exact Match” only the archived
records that have the exact same value (or exact same pattern for temporal criteria) as the seed
record will be retained. If user-adjustable tolerances have been specified, the records’ criteria val-
ues only need to be within the tolerance ranges to be retained. The tolerance range is represented
by a set of values for categorical criteria, the minimum and maximum values for numerical criteria,
or a pair of upper and lower bounds of the pattern difference scores for temporal criteria. This step
iterates over all archived records and all criteria in O(R - C) time, where R is the total number of
records in the dataset and C is the number of criteria of each record.

Ranker. Next, “Close Match” criteria are used to rank the archived records by their similarities
to the seed record. A comprehensive distance score is computed for each archived record by first
assessing the difference in each criterion and then summarizing them into a single distance score.
Both assessing the differences in “Close Match” criteria and computing the summary distance
score take O(R - C) time. Ranking the records by similarity takes O(Rlog R) using Python’s built-
in sorting algorithm.

Similarity Filter. Given a Similarity Threshold specified by users, EventAction further removes
records that are not similar enough to the seed record (i.e., records with a distance score larger
than the threshold). This step iterates over the records and takes O(R) time.

Interface. Finally, the remaining similar records are passed to the visualization views and shown
to users. The views also provide interactive controls for users to refine the results.

4.1.2  Distance Score Computation. For those “Close Match” criteria, a comprehensive distance
score is computed for each archived record based on the empirical assumption that the archived
records tend to be more different from the seed record if they have (1) nonidentical values for
categorical attributes, (2) larger discrepancies in numerical attribute values, and (3) larger devia-
tions in activity patterns. The algorithm first assesses the differences for each criterion and then
summarizes them into a single distance score.

Categorical Criteria. For each categorical criterion cc € C, we define the difference score between
an archived record r and the seed record s as

Ac(ce,r,s) = {

0, wo(cc,r) € t(cc,s)
a, vlce,r) ¢ t(ce,s),

where v(cc, ) returns the value of the categorical criterion (cc) for a given record and t(cc, s) re-
turns the set of categorical values in the user-specified tolerance range (or {v(cc, s)} if the tolerance
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is not specified). The difference score is set to « when the value of the given record (r) is not within
the tolerance range. We let @ = 0.5 to keep a balance between categorical and numerical criteria,
but the optimal value depends on the data and analysis.

Numerical Criteria. For each numerical criterion nc € N, the difference between an archived
record r and the seed record s is formulated as

lv(ne,r) — ty(nc,s)|, v(ne,r) > t,(nc,s)
An(nec,r,s) =1 |v(ne,r) — ty(ne,s)|, ov(ne,r) < ti(nc,s)
0, otherwise,

where v(nc, r) returns the value of the numerical criterion (nc) for a given record and t,(nc, s)
and t;(nc, s) returns the upper and lower bound of the user-specified tolerance range, respectively.
When the tolerance of nc is not specified, we have t,(nc,s) = t;(nc, s) = v(nc, s). Before the com-
putation, values of each numerical criterion are standardized by scaling to range [0, 1].

Temporal Criteria. For each temporal criterion tc € T, we compute a pattern difference score
v(tc,r) for each archived record r, reflecting its difference from the seed record s in activity pat-
terns:

o(te,r) = ||p(te, r) — p(te, s)ll,

where p(tc, r) returns a two-dimensional vector (x = time, y = event category) representing the
activity pattern of r. The values represented in p(tc,r) are the numbers of occurrences of each
event category during each time period. The minus operation computes the Euclidean distance
between two vectors and the output of v(tc,r) is a numerical value. This allows us to reuse the
difference function for numerical criteria and let A7 = Ay.

Finally, we summarize a comprehensive distance score for each pair of archived record r and
the seed record s based on weighted Euclidean distance [14]:

distance(r,s) = Z WCCAZC(CC, r,s) + Z wnCA?V(nc, r,s) + Z wtcAzT(tc, r,s),

cceC nceN tceT
where w € [0, +00) is the weight assigned to a criterion.

4.1.3 Time Complexity Analysis. Finding similar records is a task that frequently repeats during
analyses. We have conducted experiments to evaluate its performance. In theory, the overall time
complexity of the EventAction data pipeline is O(E + R - (C + log R)), where E is the total number
of events, R is the total number of records, and C is the number of criteria of each record. To provide
a sense of timing, we conducted an experiment using synthetic datasets of varying numbers of
records (100, 200, 400, 800, 1,600, 3,200, 6,400, 12,800, 25,600, and 51,200) and numbers of criteria (10,
20, and 30). In each dataset, half of the criteria were categorical and the other half were numerical.
All criteria were set to “Close Match.” On average each record contained a sequence of 40 events
and thus the total numbers of events in the testing datasets are 4,000, 8,000, 16,000, 32,000, 64,000,
128,000, 256,000, 512,000, 1,024,000, and 2,048,000.

Figure 6 reports the average runtime of 100 repetitions tested on each dataset. All tests were
performed on a machine with a 2.3GHz Intel Core i7 processor with 16GB 1600MHz DDR3 memory.
The results show that the time for finding similar records grows almost linearly as the number of
records (R) increases by a factor of 2, and the growth rate was mainly determined by the number
of criteria (C).
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Fig. 6. The average runtime of the EventAction data pipeline on synthetic datasets of varying numbers of
records and numbers of criteria. The results show that the time for finding similar records grows almost
linearly as the number of records increases by a factor of 2, and the growth rate was mainly determined by

the number of criteria.
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Fig. 7. An illustration of the sequence recommendation algorithm.

4.2 Automatic Recommendation of Event Sequences

In this section, we introduce an extension to EventAction for generating recommendations of ac-
tion plans automatically. After a user has selected the similar records, the event sequences of those
similar records who have achieved the user’s desired outcome will be analyzed and a representa-
tive action plan will be recommended to the user. Users can review the recommended plan and
choose to (1) follow the plan without modification, (2) tune the plan to better fit their needs, or
(3) use the recommended plan as a reference and design their own plans from scratch. In this sec-
tion, we describe the algorithm for generating sequence recommendations and the challenges and
solutions for integrating it into EventAction.

4.2.1 Sequence Recommendation Algorithm. Our sequence recommendation algorithm was
based on Markov decision processes (MDPs) and used an implementation provided by
Theocharous et al. [74, 75]. This section summarizes the basic process of generating recommen-
dations of event sequences (illustrated in Figure 7). Full algorithmic and evaluation details can
be found in the original papers. MDP-based models are widely used in applications as a mathe-
matical framework for solving sequential decision problems (e.g., navigating a robot) [80]. While
recurrent neural networks (RNN) are emerging in sequence modeling applications, we chose MDP
for two main reasons. First, the datasets of our current use cases are relatively small (e.g., thou-
sands of student records or patient events) and the set of similar records for model training are
even smaller (hundreds of records). While most recurrent neural network models require a large
dataset to train (typically around 100k records) [72], MDP-based models show good performance
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on small datasets in terms of accuracy and model building time [65]. Second, our recommenda-
tion model needs to be retrained every time the set of similar records has been updated. In our
use cases, MDP-based models can generate recommendations within a reasonable latency (typ-
ically less than 1 minute). Nevertheless, we believe deep learning models have great potentials
in future EventAction applications which are likely to require large-scale datasets and powerful
machines.

Sequence Modeling. The first step is to model archived event sequences using a probabilistic suffix
tree (PST), which takes into account a record’s activities so far to recommend the next action. PST
provides a compact way of modeling temporal patterns that compresses the input sequences to
accelerate computation. Each node in a PST encodes a frequent suffix of history events and is
associated with a probability distribution of the next events. Given a PST model and the history
event suffix S = (e, €5 . . . e;), the probability of the next event can be estimated as P(e;11]S). Our
implementation used the pstree algorithm [21] in R language.

Model Computing. After building the PST, the next step is to create MDP models. The MDP
model can be computed directly from the PST, where the states of the MDP are nodes of the PST
and the state transition probability is derived from the longest paths in the PST. Specifically, given
a history event suffix S = (ej, e, . . . ;) available as a node in the PST tree, the model computes the
transitioning probability from each node to every other node by identifying the longest suffixes in
the tree for every additional event that an action can produce.

Action Recommending. The last step is to find the optimal policies generated by the MDP models
for generating recommended event sequences. Our implementation uses Thompson sampling [76],
which is a heuristic approach for choosing actions that address the exploration-exploitation
dilemma in the multi-armed bandit problem [6]. In particular, Thompson sampling is capable of
choosing the next actions in real time to maximize the “expected reward” as specified on each state
(usually provided in the dataset or specified by users). Gopalan and Mannor [23] have extended
Thompson sampling to be applicable to MDPs. Specifically, in each round of sampling, an action a*
is simulated according to the probability that it maximizes the expected reward E (r|S, a*), where
S = (e, ez...e) is the suffix of history events. Theocharous et al. [74] conducted experiments
to compare Thompson sampling against a greedy planning strategy and found that Thompson
sampling runs faster and can produce more rewards than the greedy approach.

4.2.2 Integration into EventAction. We describe the three major challenges and our solutions
for integrating the automatic recommendation algorithm into EventAction.

Event Co-Occurrence. The sequence recommendation algorithm was originally designed for rec-
ommending travel plans, where each event represents a place to visit without any overlapping [74].
However, event co-occurrences commonly exist in many other application domains where multi-
ple events occur or are logged at the same time. For example, a patient may take multiple drugs
together and a student may attend multiple classes during a day. Due to the use of probabilis-
tic suffix tree, the original sequence recommendation algorithm was not capable of modeling or
recommending sequences with co-occurred events.

Our implementation overcomes this challenge by transforming the co-occurred events into
event episodes. Each episode is an unordered combination of events with possible repetitions,
represented by a vector E = (|e1], |ez] . . . |en|). Event episodes are categorized by its event compo-
sitions and the raw event sequences are encoded into sequences of event episodes, which can be
used by the sequence recommendation algorithm. The recommended plan also consists of event
episodes and is decoded back to the original events before presenting to users.
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Reward Function. In the use case of recommending travel plans, the “reward” for visiting each
place (i.e., event) can be assessed based on its ratings from past visitors, which can be easily ob-
tained from online services (e.g., TripAdvisor or Google Maps). However, subjective ratings for
events are generally not available and difficult to collect in many other domains. To make the se-
quence recommendation algorithm usable even when rewards are not provided in the dataset, we
defined a default reward function by counting the popularities of the events of records that are
similar to the seed record and have achieved the desired outcome. This reward function makes the
assumption that the event popularities are correlated with the outcomes. Users are encouraged to
verify this assumption or define their own reward functions.

Scalability. The time complexity for computing the Markov Decision Process mainly depends
on the number of nodes in the probabilistic suffix tree, which grows exponentially as the num-
ber of unique sequences increases. A detailed performance evaluation has been conducted by
Theocharous et al. [74]. To reduce the latency, users can choose to classify the event episodes and
only keep N representatives. A larger N will produce more tailored recommendations but cost
longer computation time. The default value of N is 20 and the computation typically takes less
than 1 minute. However, the optimal setting depends on specific datasets and analytical goals. In
addition, the recommendation algorithm is run in a separate process in parallel with the system’s
main process, so that users can keep exploring during the computation. After the computation
completes, a recommended plan will be displayed on top of the seed record timeline on the future
side (Figure 4(b)).

Limitations. We did not evaluate the accuracy of the sequence recommendation algorithm in
our application scenarios due to the lack of ground-truth for “the most appropriate set of similar
records” or “the most appropriate reward of each event category.” Thus, it is difficult to assess the
accuracy of the recommendation algorithm in terms of “what is the best plan.” When designing
EventAction, we focused less on achieving the best possible algorithmic accuracy and more on
giving users controls and allowing users to develop personalized plans that they are more likely
to follow. In most cases, the recommended plans serve as reasonable starting points as they are
derived from the data and with theoretical supports.

5 CASE STUDIES

The case study that was our motivating case study (i.e., the education case study with a student
advising scenario), as well as feedback based on early versions of EventAction has already been
reported in early papers [16, 18]. This section reports on three new case studies that illustrate the
potential use of EventAction in healthcare and marketing.

Following the Multi-dimensional In-depth Long-term Case studies (MILCs) procedure [67] all
our case studies were conducted with real users and using real-world datasets. They provided
evidence of the value of generating event sequence recommendations based on personal histories
and helped us produce design guidelines for the construction of event sequence recommendation
user interfaces and usage guidelines for mitigating the ethical issues in dealing with personal
histories. At the end of this section, we also describe three incomplete case studies that may help
potential users identify conditions for suitable applications of EventAction.

5.1 Medical Intervention Planning for Health Coaches

This case study was conducted with two health analysts using real-world patient health records.
This 2-month case study included biweekly discussions, interviews, data preparation, system de-
ployment, and data exploration. We provided training and necessary guidance, and answered
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questions over the meetings and interviews. Our goal was to investigate how EventAction might
help health coaches choose personalized health interventions.

Task. This case study was conducted with health analysts working with a population manage-
ment company. The company hires health coaches to monitor patient health conditions with sen-
sors. When an alert shows up, the coach needs to help the patient resolve it. The study goal was
to evaluate if EventAction might help determine the best way to resolve those health alerts.

Health coaching traditionally encompasses five principal roles: (1) providing self-management
support, (2) bridging the gap between clinician and patient, (3) helping patients navigate the health
care system, (4) offering emotional support, and (5) providing continuity of care. While health
coaches have always had to interpret information and decide on engagement strategies, with the
introduction of mHealth tools, an effective health coach must be able to interpret more frequent,
voluminous and diverse data, in effect becoming a data analyst, in addition to a behavior change
agent. Health coaches must decide who needs attention, the priority of outreaches, what mode
of contact may work best, and what approach may be appropriate. Traditionally, this was accom-
plished with judgment and limited data, but innovative analytics incorporating pervasive data and
individual differences (e.g., demographics) allow health coaches to make these decisions based on
what worked for similar cases, offering newfound possibilities for precision healthcare through
mHealth.

Data. The research setting includes 107 health insurance plan members that were enrolled in a
mHealth care management program. These plan members are ages 34-66, with poorly controlled
chronic disease, principally congestive heart failure, as identified by the plan using healthcare
claims data. The cohort consists wholly of Medicaid managed care plan members. It can be ar-
gued this population faces special challenges with the social determinants of health; factors such
as housing, transportation, access to food, and safe neighborhoods. While the results need to be
considered in light of these differences from affluent populations, the treatment activities chronic
disease patients should adhere to and the role of health coaches are similar. The data used in this
case study included demographics (gender, age, weight), test results (diastolic, SpO2, and systolic
blood pressure), outreaches (1,004 events including coaching call, voice message, text message, and
others), and care gaps (2,626 alert events).

Analysis. During the case study, the health analysts selected a current patient (46 years old,
male) as the seed record. EventAction retrieved and displayed the profile and recent activities
of the patient. The analysts immediately noticed that while the weight of the patient was in the
normal range, he had extremely high diastolic and SpO2 readings. They adjusted the weights of
these two similarity criteria to find patients with similar test results.

From the timeline, the analysts found the patient had health alerts every day during the last
3 days, indicating that health coaches’ attention was needed for resolving the alerts. However, as
clearly shown in the timeline, the health coach only called the patient once on the third day, which
was delayed and unexpected. The analysts created a new similarity criterion to reflect this pattern
of not being contacted during the first 2 days of alerts. The top 20% most similar records were
selected as the peer group. The outcome distribution view showed that the health alerts of 69% of
those similar patients got resolved within 5 days, which was slightly above the baseline of 61%.

To develop a health intervention plan for resolving the alerts of the patient, the analysts re-
viewed the activity summary of those similar patients. The heatmap showed that 69% of the similar
patients will continue to have alerts on the fourth day and the number stays above 50% until the
eighth day. Furthermore, the most common health interventions for those patients were a daily
coaching call. The analysts switched to show activities distinguishing patients who had their alerts
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resolved within 5 days from others. Green hotspots showed up for coaching call during the fifth,
sixth, and seventh days, indicating that interventions were most effective during these periods.
The analysts specified a plan using these insights and the estimated likelihood of resolving the
alerts within 5 days increased by 8%.

Feedback. Reviewing EventAction with health analysts provided actionable insights. A powerful
component of EventAction is that it allows for hypothesis testing of patient results, as one health
analyst said: “A health coach or care manager can pose questions to the data, such as what could
happen when similar patients to the patient under inquiry did X?” The other analyst appreciated the
rich similarity criteria controls and commented that “the system allows for addressing population
health strategies through easily identifying and segmenting patient cohorts by customizable data
parameters.”

The study indicated that a more specific interpretation of results was needed. We envision that
this would be built into training materials and that tooltips could be included to display advice
when the pointer hovers over it. The clear flagging of strategies that are recommended or not
recommended were additional features highlighted for development. In addition, the use of a tool
that embeds peer comparisons for health naturally raised privacy concerns that one may be expos-
ing peers unnecessarily. Additional work to conceive appropriate anonymization for large-scale
implementation is needed. Finally, the heatmap meaning was not clear at first and was revised.
Darker colors made it easier to see where similar patients achieved desired results.

We recognize the limitation that the results are for one mHealth care management system, lim-
ited data, and involve feedback from a small number of health analysts; however, this exploratory
case study is the first attempt at exploring the use of such systems.

5.2 Campaign Planning for Marketing Analysts

This section reports on two case studies conducted with five marketing analysts and using real-
world event sequence datasets. Two of the analysts focused on email campaigns, two on cross-
channel marketing, and one on web analytics. Each case study lasted about a month consisting
of interviews, data preparation, system deployment, and data exploration. During the case stud-
ies, we provided training and necessary guidance, and answered questions. The study goal was
to investigate how EventAction can help marketers prescribe personalized marketing interven-
tions. Figure 8 illustrates a synthetic dataset of customer records. Since marketing datasets usually
contain large numbers of records, it is impossible to precisely make plans for each customer. The
marketing analysts in the case studies evaluated EventAction by selecting seed record that is rep-
resentative of a type of customers so that the action plan will be applicable to them as well.

5.2.1 Customer Onboarding. After customers start the product trial, the marketers will send
them a series of five onboarding emails to help them learn to use the product and to engage them
to make purchases after the trial period. Each of the five emails provides different content, includ-
ing welcome notes, product promotions, tutorials, and learning resources. In this case study, the
analysts wanted to make plans for sending onboarding emails to new customers so as to increase
their engagement.

Data. The analysts provided a dataset of 25,000 archived records of past customers who have
received the five onboarding emails. The dataset contains about 112,000 events tracking the send,
open, and click of each email. We used a sample of 500 records and 8,191 events in the case study.
Only one record attribute existed in the dataset indicating the regions of the customers. The out-
come was defined by the number of emails that customers clicked any links in, such as links to the
product purchase website or to tutorial videos, which is an indicator of their engagement during
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Fig. 8. This figure shows a synthetic dataset illustrating the “Channel Attribution Analysis” case study. For
privacy constraints, the real datasets used in the case studies are not shown in the figure. A seed record and
500 archived customer records are displayed. Marketing activities are related to sending email ads, event
invitation, and paid search ads (a). Record attributes include the customers’ genders, ages, and previous
product purchases (b). Two types of outcomes are defined: “Sales Qualified” and “Not Sales Qualified” (g).
All record attributes are used as similarity criteria by default and a new criterion is created to capture the
temporal pattern of having no email-related activities (a). The top 25% most similar records are selected as
the peer group (c). An action plan of sending the customer more email ads is specified (f) and the likelihood
of becoming “Sales Qualified” increases by 12% (g).

the product trial. The outcome was categorized into “0 click,” “1-2 clicks,” and “3-5 clicks,” where
“3-5 clicks” was the most desired one.

Analysis. The analysts selected a seed record for a customer who had received and opened the
first two emails but did not click on any links. They wanted to make a plan for the subsequent
emails that may lead to the outcome of “3-5 clicks.” They started by specifying a “no click” pattern
and only keeping customers having this pattern. Then, they selected the top 30% most similar
records as the peer group and continued to review guidance for planning.

The analysts opened the activity summary view to review the email sending patterns of all
archived records. The heatmap showed hotspots approximately every 7 days with some variations,
which was expected by the analysts. From the outcome distribution view, the analysts realized
that the seed record’s likelihood of clicking 3-5 emails was only about 3%, which was much worse
than the baseline of all archived records. The analysts decided to lower their expectations and
changed the desired outcome to “1-2 clicks.”

Then, they reviewed activities that distinguish customers who had “1-2 clicks” from others in
the peer group. A green hotspot for email #3 showed up 3 days after sending email #2. About
11% more similar customers who received email #3 on that day will make 1-2 clicks during the
onboarding. If they also open that email, the difference will further increase to 14%. The analysts
checked the content of email #3 and found that it was featuring learning resources and tutorials
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for the product. They explained: “We thought it might be an important email and now EventAction
provides evidence for it.” Following these findings, the analysts specified a plan for sending the sub-
sequent emails. EventAction estimated an 11% increase in the seed record’s likelihood of making
1-2 clicks.

5.2.2  Channel Attribution Analysis. In this case study, the marketing analysts wanted to under-
stand which campaign channels will be the most effective for converting a current customer into
sales qualified, which means they are ready for the sales team to reach out.

Data. The analysts prepared a dataset of 997 customer records and 26,472 events. The record
attributes included which product was promoted and the region of the campaign. Campaign ac-
tivities included “event invitation,” “paid search ads,” and “email ads sent.” Customers’ activities
included “email ads open,” “email ads click,” and “website visit.” The outcome was defined by
whether or not a customer became sales qualified judged by the sales team.

Analysis. The analysts select a seed record who actively opened emails but never visited any
product websites during the past 5 months. They reviewed the profile of the customer and found
that their past interactions with this customer were mainly by email with only a few “event in-
vitations” and no “paid search ads.” They created a new similarity criterion to reflect this pattern
and selected the top 20% most similar records as the peer group.

The analysts immediately noticed that in the following 5 months those similar customers usu-
ally continue to actively receive and open emails. Their likelihood of becoming sales qualified was
slightly below the baseline but still promising. The analysts switched to show activities distin-
guishing those who became sales qualified from others. Green hotspots showed up in the 6th and
7th months for “event invitation,” “email ads sent,” and “email ads click” indicating that sending
out event invitations and campaign emails soon may help in improving the outcome. The ana-
lysts specified a plan using these insights and the estimated likelihood increased by 10%, which
outperformed the baseline.

5.2.3 Feedback.

Pseudo A/B Testing. In both case studies, the marketing analysts found EventAction useful for
testing hypotheses based on historical data. For example, one commented that “EventAction allowed
me to simulate plans and get results immediately. This can help me select variables for A/B testings.”

Temporal Information. All marketing analysts liked EventAction’s visual and interactive way for
exploring the temporal information; as one said, ‘T can see the data directly.” The analysts of the
channel attribution study also applaud that EventAction introduced a new time dimension for their
attribution analysis; as one explained, “it not only informed us about which channels were important
but also showed how the importance evolves over time.” In addition, “EventAction enabled us to filter
the records using temporal patterns, which helps getting more precise results” another analyst added.

Automatic Planning. The analysts were excited about EventAction’s automatic plan recommen-
dation feature because “it will save a lot of time and effort in the long term.” However, they prefer
to learn more about the mechanism before relying on it in real tasks. They suggested a workflow
of showing the recommended plan at the beginning and allowing users to modify it during the
analysis, which is a workflow deviation supported by EventAction (Section 5).

5.2.4 Challenges and Solutions. Through the process of the two case studies, the analysts have
highlighted the challenges in analyzing customer records and planning marketing interventions.
These challenges lie in both the uniqueness of customer records and specific marketing tasks. We
cover the four major challenges and discuss our solutions.
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Limited Record Attributes. Unlike patient or student records, customer records are usually anony-
mous without details such as demographics, diagnoses, or surveys. The available record attributes
are usually very limited, which makes it difficult to profile the customers and design personalized
campaign strategies. EventAction addresses this challenge by using customer’s activity patterns
to identify similar customers and guide the planning. For example, given a customer who opens
campaign emails but never visits the product website, marketers can find similar customers having
this activity pattern and explore what campaign strategies worked the best for them.

Visualizing Complex Temporal Data. Temporal data in the marketing domain are difficult to visu-
alize due to their complexities in three aspects: (1) the number of event categories is large capturing
various campaign-related activities; (2) the numbers of events in categories are very different, rang-
ing from hundreds of emails sent to only one or two purchases; (3) many events occur at roughly
the same time causing severe overlaps and visual clutter.

EventAction’s timeline view can effectively handle event co-occurrences (3) by aggregating
events in each time period. However, since it uses the sizes of the squares to show the numbers of
events, popular categories will dominate the view (2), making squares in minor categories invisi-
ble. We addressed this issue by using a power scale size = sqrt(num) when the range of the sizes is
large. We also grouped the event categories into three groups to help users focus on one group at
a time (1): interventions, reactions, and outcome. However, a more scalable timeline design is still
needed to fully address aspect (1) when the number of event categories is large within a group.

Large Number of Records. A marketing dataset may contain millions of customer records, which
can significantly slow down the computation and rendering. EventAction mitigated this issue by
only visualizing similar records. To accelerate the similarity computation, future work could be
conducted to investigate other techniques such as clustering and comparing records in groups.

Slow and Expensive A/B Testing. Conducting A/B tests to examine different campaign strategies
may cost significant resources and take a long time when the number of variables is large. Even-
tAction provides a low-cost approach allowing marketers to quickly simulate different plans using
historical data and get immediate results. The actual A/B testing will only need to cover strategies
with promising results or low confidences (e.g., very few archived records matched the criteria).

6 DISCUSSION

This section describes the design and usage guidelines produced through our studies. Then, it
discusses promising directions to extend our current software prototypes and studies.

6.1 Guidelines

We describe five design guidelines for the construction of event sequence recommendation user
interfaces and three usage guidelines for mitigating the ethical issues in dealing with personal
histories. These guidelines are produced through our empirical studies of interface components
and case studies in three domains, including education, marketing, and healthcare.

6.1.1 Design Guidelines.

G1. Center the Interface Design on the Seed Record. Unlike many other event sequence visual-
ization tools [24, 50, 82, 83], the analytical workflow of EventAction is oriented by a seed record.
Centering the interface design on the seed record emphasizes the workflow and keeps users
focused on the tasks of finding similar records and making action plans for the seed record. For
example, when designing the LikeMeDonuts, we placed an image of the seed record at the center,
which provides a visual reminder that all the information is relative to that person. The thickness
of each donut ring and the color of each cell are meaningful in achieving the goal of finding
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similarity or differences. Users found this design clearly illustrated the purpose of the interface
and they tended to move important criteria closer to the image to be focused.

G2. Increase Algorithm Transparency with Visualizations and User Controls. Our study results
showed that increasing the algorithm transparency of sequence recommender systems can in-
crease users confidence and engagement, even at the cost of added complexity. How people per-
ceive the similarity between personal records is subjective, depending on their preferences, experi-
ences, and beliefs, leading some observers to dismiss this as a slippery notion [15]. It is possible to
define a set of initial similarity criteria but users should be able to review and adjust those criteria
for specific applications. For example, EventAction provides visualizations to help users review
similar records and provides controls for users to adjust similarity criteria. This article focuses on
making critical life decisions in which users demand more controls and context even at the cost of
added complexity [17, 29]. Our designs and findings require more effort than is typical in enter-
tainment and shopping recommender systems, which are used for less critical decisions. While our
work focused primarily on the design of interfaces to help users review and tune the peer group
and recommendation, there may be better algorithms to generate the initial recommendation, for
example, using recurrent neural networks [72].

G3. Show Both Individual-Level Details and Group-Level Overviews. Reviewing and refining the
results of similar records are key steps in the analytical workflow of event sequence recommenda-
tion. The interface should provide both individual-level details and group-level overviews so that
users can efficiently review and refine similar records using both record attributes and temporal
events. In addition, the group-level overviews should allow users to track and review a group of
records that share similar values across multiple criteria, so that users can estimate the group size,
explore how those records are distributed in other criteria, and refine the results by removing the
group when necessary. For example, EventAction uses a ranked list to show individual details
and provides three visualization components for reviewing and refining peer groups, including
LikeMeDonuts, History Heatmap, and Ranking Glyph.

G4. Include Both Record Attributes and Temporal Activities. Electronic records of personal histo-
ries (e.g., patients, students, historical figures, criminals, customers) consist of multivariate record
attributes (e.g., demographic information) and temporal activities (timestamped events such as
first diagnosis, hospital stays, interventions). To compare personal records and define similarity
criteria, it is important to take into consideration both record attributes and temporal activities. In
particular, we found temporal activities play a more fundamental role in some application domains
such as digital marketing, where the records are usually anonymous without detailed attributes
such as demographics, diagnoses, or surveys. In EventAction, both record attributes and temporal
activities are used as features to identify similar records and provide appropriate recommenda-
tions. It allows users to select records that have similar attributes and start with a similar event
sequence, and then see how different choices of actions and the orders and times between them
might lead to users’ desired outcomes.

G5. Support Flexible Analytical Workflows to Satisfy Different Users’ Needs. We noticed many
different workflows in our user studies, deviating from the typical analytical workflow (see Sec-
tion 3.5). To satisfy different users’ needs, the interface should support flexible analytical work-
flows. For example, EventAction allows users to skip the step of finding similar records and start
by reviewing the recommended plan. In this case, the recommendation will be generated using a
set of records retrieved with default similarity criteria.

6.1.2  Ethical Issues and Usage Guidelines. Reviewing ethical issues is important in dealing with
personal histories. We discuss the ethical issues we encountered in our studies and describe three
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Before You Start x

Make sure the data is appropriate for your analysis:

« |s this data rich and large enough?
« Is using past data appropriate (e.g., policies may have changed)?

« Are you using this tool with an experienced advisor (highly recommended)?

© keep these questions in mind during your analysis

Your dataset includes:

« 101 records @ may be too small
« 10 record attributes
« 3,934 events dated from 2013-09-01 to 2018-05-31 @ may be out of date

« 8event categories

DON'T SHOW AGAIN OK

Fig.9. EventAction’s startup screen that prompts usage guidelines and identifies potential issues and biases.

usage guidelines for mitigating those issues. EventAction provides a startup screen that reminds
users of potential issues and biases in the data (Figure 9).

G6. Use Rich, Large, and Representative Data. The holy grail of recommender systems is to con-
vert recommendations into users’ actions. Providing reliable recommendations has the potential
to increase users’ trust in the system and thus motivate actions. The reliability depends on the
quantity and quality of the data available. To better profile the seed record and find accurate sim-
ilar archived records, the data describing each record must be rich; and to find sufficient similar
archived records, the data volume must be large and representative. Biases may be introduced
when the available data do not represent people adequately and few similar records exist, or when
there are errors or missing attributes in the data [54]. In those cases, it is important to ensure
that the algorithm’s confidence in generating the recommendation and the user’s confidence in
following the recommendation remains appropriately low.

G7. Remind Users that it is Okay to be Unique Among Past Paths. Overconfidence can also be
an issue. While most students, patients, and others who must make life choices may be eager to
follow the paths of predecessors, there are dangers to such an approach. Decision-makers who
consult databases of predecessors risk repeating old paths that are no longer relevant because past
histories of bias have been rectified or because circumstances have changed. While there may still
be lessons from the past, users need to be reminded that their history is unique and that breaking
from past paths may be a powerful way to distinguish themselves.

G8. Encourage Collaborative Use with an Experienced Advisor. Bad data that reinforces existing
biases may be taken as truth and data that challenges them dismissed. Will a poorly performing
student be discouraged when seeing the outcome of similar students? Or will a high achieving
“anomalous” student in a poor achievement cohort set her horizon too low? Those issues ar-
gue strongly for collaborative use where the advisee is working alongside an experienced advisor
who can interpret the results or judge data quality. However, advisors’ guidance will not solve all
problems since they are also vulnerable to biases [7]. EventAction mitigates this issue by giving
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transparent data access to both advisors and advisees and involving them in the decision-making
process.

6.2 Incomplete Case Studies and Limitations

EventAction was used in three other case studies that were not completed for a variety of limita-
tions. This section describes those incomplete case studies to help potential users identify condi-
tions for suitable applications of EventAction.

Too Sparse Temporal Events. A transportation case study used a dataset of emergency respon-
ders’ activities during auto accidents. The study partner wanted to use EventAction to develop
rescue plans for ongoing emergencies by finding similar previous accidents. The temporal events
in the dataset consisted of hundreds of categories, which were hand typed by operators and in-
cluded detailed information such as the names of the responders. EventAction was able to load and
visualize the dataset. However, since the events were categorized into too many categories, each
category only contained one or two events in several time periods, making it difficult to find valid
common patterns or generate reliable recommendations. The study partner was encouraged to
find strategies to aggregate the event categories, but decided to change how the data was recorded
(e.g., asking the operators to select from a list of possible event categories instead of typing). Not
enough data has been accumulated following the new procedure yet.

Too Complex Temporal Pattern Search. One healthcare case study was incomplete due to the
complexity of the needed temporal pattern specification. This case study used a dataset of pa-
tients’ electronic health records. Each record consisted of a patient’s complete medical history for
years and contained thousands of detailed events such as hospital visits, prescriptions, and health
examinations. The study partner wanted to evaluate if EventAction could find similar patients
and help doctors prescribe treatments. EventAction was first used to explore a small sample with
around 50 events in each record and was able to find reasonably similar records. However, after
including all the events, each patient’s temporal activities, spanning many years, became too com-
plex and unique, making it difficult to identify common patterns between the similar records and
the seed record using the current EventAction interface. The study partner concluded that they
needed to first simplify the dataset (such as extracting events with a time window and coalescing
hidden complex events into one [19].) They also decided to develop their own custom similarity
search for the specific pattern search they needed [37].

No Suitable Outcome Data. Another healthcare case study was incomplete because the study
partners were unable to find suitable outcome data. The case study was conducted with three
health analysts using a dataset of medical activities recorded in the emergency room. The ana-
lysts wanted to evaluate if EventAction could be used to recommend possible treatment plans for
a current patient by finding similar previous patients. After a few visits and meetings, we were
able to build an initial EventAction demo to illustrate the process of finding similar patients. How-
ever, the analysts then realized that they had not collected data about outcome (e.g., survived or
died). Since EventAction requires a clearly defined outcome attribute in each record to generate
recommendations, the analysts decided to pause the case study in order to gather the outcomes.

6.3 Future Directions

Our goal for this research was to explore the research possibilities for explainable event sequence
recommendations and open up new directions for future researchers. While our case studies were
promising, EventAction can be further enhanced.
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Scaling Up. Scalability becomes an issue for most interactive visualizations as the size of the data
grows. While using powerful machines can accelerate the computation and rendering, reducing
human effort in analyzing larger datasets remains challenging for EventAction. We propose three
future directions to support analyses of extremely large datasets, such as millions of online cus-
tomer records. First, while making action plans for one advisee at a time is the typical scenario
in many application domains (e.g., healthcare and education), users from several other domains,
such as digital marketing, requested support for handling a seed group (i.e., a group of records of
interest). Then, marketers can explore archived customers similar to the seed group and develop
campaign strategies to increase the purchase rate of the group. Second, similarity searches often
return too many matched and partially matched records. Although EventAction presents the re-
sults of similar records in a ranked list with the most similar ones on the top, it still costs users extra
time to explore and find useful information. To resolve this “information overload” problem, data-
base research has been done to cluster or categorize query results into meaningful groups. Third,
when the number of criteria grows larger, showing all criteria at once is likely to overwhelm most
users. Automatically selecting two or three criteria to start may be useful [47, 84].

Supporting Collaboration. Unlike existing collaborative visualization systems as summarized by
Isenberg et al. [31], one unique challenge in supporting collaboration in EventAction is that the
collaborators play asymmetric roles: (1) advisors are usually familiar with the system and thus
can fully understand the visualizations and confidently use the controls while advisees are typi-
cally novice users who prefer to start with a simple interface, (2) advisors are privileged to review
archived records with private information while advisees should only see de-identified data or
aggregated summaries, and (3) advisors have knowledge about domain policies and previous pro-
fessional experience while advisees know better about their own personal preferences and needs.
Developing an asymmetric collaboration framework will likely increase advisees’ engagement in
using EventAction and also benefit similar software tools for student advising, patient caring, and
client consulting.

Celebrating Diversity. Components of EventAction could also be put to use for other applications.
For example, instead of tuning the peer group to be as similar to the seed record as possible,
it could be tuned to be diverse. Diversity can drive innovation in teams [30]. An organization
may need to assemble a panel of peers to review the grievance brought up by an employee. In
this case, the group of peers needs to be close to the employee but diverse enough to include
members from multiple divisions of the company, genders, backgrounds, and with some age and
background variations. One solution is to extend EventAction’s search algorithm to include both
“similarity criteria” and “diversity criteria.” Then, clusters can be detected in the search results and
representative records can be selected from each cluster to achieve diversity.

7 CONCLUSION

Our contributions grow out of our experience in the design, implementation, and evaluation of
EventAction, an interactive prescriptive analytics system with a systematic analytical workflow,
to assist users in making action plans that elicit high user confidence. Empirical studies in two do-
mains have provided evidence of the effectiveness of generating event sequence recommendations
based on personal histories. Through the design, implementation, and evaluation of EventAction,
we have produced design guidelines for the construction of event sequence recommendation user
interfaces and usage guidelines for mitigating the ethical issues in dealing with personal histories.
We believe this article opens new avenues of research in explainable event sequence recommen-
dations based on personal histories that enable people to make better decisions for critical life
choices with higher confidence.
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