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ABSTRACT
Animated transition has been a popular design choice for
smoothly switching between different visualization views or
layouts, in which movement trajectories are created as cues
for tracking objects during location shifting. Tracking mov-
ing objects, however, becomes difficult when their movement
paths overlap or the number of tracking targets increases.
We propose a novel design to facilitate tracking moving ob-
jects in animated transitions. Instead of simply animating an
object along a straight line, we create “bundled” movement
trajectories for a group of objects that have spatial proximity
and share similar moving directions. To study the effect of
bundled trajectories, we untangle variations due to different
aspects of tracking complexity in a comprehensive controlled
user study. The results indicate that using bundled trajectories
is particularly effective when tracking more targets (six vs.
three targets) or when the object movement involves a high
degree of occlusion or deformation. Based on the study, we
discuss the advantages and limitations of the new technique,
as well as provide design implications.
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INTRODUCTION
Recent advances in information visualization have
augmented the capacity of static graphics in understanding
various aspects of data. For example, in a two-dimensional
scatterplot, allowing users to switch between views with
axes corresponding to different pairs of variables can
help users capture the data distribution across multiple
dimensions [14]. Animated transition, which generates a
sequence of images to create visual continuity between
changes of objects (e.g., colors, sizes, and locations), has
become a popular design choice when switching between
different views or layouts [8]. When the animation involves
shifting the location of objects, continuous movement
along the line between an object’s initial and destination
positions is shown to create a movement trajectory as cues
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Figure 1. An illustration of the movement trajectories of five objects.
Dashed and solid lines represent straight and bundled trajectories.

to help users keep track of the objects and their variations.
This simple technique has been commonly used in many
situations involving objects’ location changes, such as
updating the underlying data [2, 8, 24] or switching between
different layout methods [4, 15, 29]. However, when objects’
movement paths overlap, or the number of tracking targets
grows, tracking moving objects becomes extremely difficult
in a typical short period of animated transitions.

There has been prior work studying this issue from differ-
ent perspectives of animation parameter controls, including
staging [5, 14, 21], grouping [14], and timing [6]. Little has
been understood about how objects’ different movement tra-
jectories affect users’ ability of tracking the objects’ location
changes in a transition. In this paper, we take the initiative
to study the effect of movement trajectories, which is a com-
plicated problem involving the following challenges: (1) a
variety of choices can be made to generate different objects’
movement trajectories, but there is a lack of simple guideline
that offers coherent design solutions; (2) users’ perceived
difficulty of tracking objects can be impacted tremendously
not only by the designs of trajectories but also depending on
the underlying data distribution, which is difficult to isolate
in an experimental study.

In this work, we overcome these challenges by first proposing
a simple yet insightful design guideline to facilitate tracking
moving objects in animated transitions. Instead of simply
moving an object along a straight line, we create “bundled”
movement trajectories (as illustrated in Fig. 1) for a group of
objects that are close to one another and share similar moving
directions. Then, we design a comprehensive controlled
user study to test the effect of using bundled trajectories in
tracking objects in animated transitions. Using a pilot study
and simulations, we decompose the complexity of tracking
moving objects into factors, including trajectory lengths and
number of targets, and identify three metrics—occlusion, dis-
persion, and deformation—which measure the tracking task
complexity in terms of different spatiotemporal structures of
data distribution. We conduct a controlled experiment based
on these various complexity aspects. The results indicate



that tracking moving objects with bundled trajectories leads
to a higher tracking accuracy than simple straight trajec-
tories when the number of targets becomes larger (six vs.
three targets), or the overall moving occlusion or deformation
becomes higher. Based on the study results, we discuss
the advantages and disadvantages of the new technique, and
provide suggestions for generating movement trajectories to
effectively track objects’ location changes.

BACKGROUND
Animation, broadly speaking, creates an illusion of continu-
ous visual changes through displaying a sequence of related
static images in a temporal manner. In this paper, we fo-
cus on animated transitions, a subset of computer animation
techniques to turn abrupt transitions into smooth ones, thus
providing a natural user experience, which is widely used in
visual system designs in human-computer interaction (HCI)
and information visualization (InfoVis) domains. A few gen-
eral guidelines have been introduced for designing effective
animations [20, 28], and the advantages and disadvantages of
animations have been discussed [3, 28]. However, many of
these recommendations are too general to guide the design of
efficient animated transitions, especially in particular appli-
cations (e.g., InfoVis) that are concerned in this paper.

Animated transitions can be characterized by two types of
parameters: temporal and spatial, i.e., parameters that govern
object speed or pacing and ones that involve object trajec-
tories. Some empirical studies about the temporal aspect
of animated transitions have been conducted. For instance,
Heer and Robertson [14] found that staged animations, i.e.,
breaking the whole animation into stages of movements, can
improve a user’s graphical perception for viewing statistical
charts. Dragicevic et al. concluded that “slow-in, slow-out”
pacing has a better object tracking performance than constant
speed in animations [6]. Guilmaine et al. found advantages of
using a hierarchical animation technique for tracking certain
kinds of changes in tree visualizations [13]. However, such
temporal approaches commonly increase the total animation
time, which may not optimize users’ performance. Moreover,
Chevalier et al. discovered that staggering, i.e., delaying the
start time of elements incrementally, actually has a negligible
effect on object tracking accuracy [5].

The spatial aspect of animated transitions is related to studies
on multiple object tracking (MOT) in perceptual psychol-
ogy [23], since many animations usually require the user to
understand which objects (e.g., points, disks, bars, etc.) move
to which locations during the transitions. Results from these
studies reveal key factors for people’s performance in MOT
tasks: speed, trajectory, and spacing. Increasing objects’
moving speeds impairs tracking accuracy and decreases the
maximum number of targets people can track [1,9,26], except
for one case when the speed is changed by scaling the display
as a whole [10]. Suganuma and Yokosawa found that the
tracking accuracy is also impaired when targets share similar
trajectories with distractors [27]. Object spacing can be
characterized by the concept of crowding. People can track a
maximum of 7 or 8 objects when there is adequate spacing,
but this number drops as objects become more crowded [10].

Study results also suggest that the identities of targets tend to
be lost when they are close to each other and when more dis-
tractors are introduced [22]. Despite that extensive research
of this topic in psychology literature has provided a lot of
empirical data and general guidelines, little has been done to
propose techniques and algorithms for improving animated
transitions from the spatial aspect (e.g., by carefully planning
object trajectories), which is our focus here.

In InfoVis, animated transitions are usually used to smooth
the switching between data views, charts, and layouts, which
involves location shifting of a large number of objects. Dif-
ferent from general MOT tasks, elements on a visualization
view often imply certain relationships among each other, that
indicate different “virtual groups” of data items in a user’s
mental model. For example, points located close-by in a
scatterplot share similar attributes, and nearby graph nodes
have stronger connections in a force-directed layout [7]. To
enhance the understanding and tracing of these relationships
during animated transitions, results of the above empirical
studies indicate that trajectory is an important cue for per-
ceptual grouping, i.e., letting related targets move in similar
trajectories and separate from distractors [27].

For static visualizations, edge bundling [16] is a common
technique to reduce the number of line crossings by grouping
similar edges, which has been widely applied in many visual
representations including graphs, parallel coordinates, and
flow maps. Nevertheless, it remains an open problem whether
similar techniques can be employed in trajectory bundling
in animated transitions to ease a user’s tracking relevant tar-
gets across two views. Moreover, trajectories in animations
have substantial differences from edges in visualizations: (1)
trajectories are virtual (not visible), and (2) trajectories con-
sist of both spatial and temporal dimensions (e.g., trajectory
crossings may not result in object collisions in an animation).
In summary, to the best of our knowledge, this work is the first
attempt to enhance animated transitions in the spatial aspect
by bundling object trajectories, and study the relevant factors
and effect of this spatial approach.

TRAJECTORY BUNDLING
In this section, we introduce the design rationales and im-
plementation of our trajectory bundling technique, which is
proposed for helping users to efficiently track moving objects
in animated transitions. We introduce this design based on
the findings from several related studies:

• In a static display of objects, people tend to group the
objects by their spatial proximity (Gestalt’s proximity prin-
ciple [19]). Similarly, in animated transitions, people tend
to perceive objects with similar trajectories as a group [27].

• When tracking multiple objects, people are more likely to
perceptually group moving objects together if visual cues
of grouping are provided, and such grouping strategy can
improve people’s tracking performance [30].

• Distorted trajectories have minor impact on tracking single
or multiple moving objects [12, 18].



Factors Description # %
F1 Tracking more targets. 7 88%
F2 Increasing distance between targets. 7 88%
F3 Increasing number of occlusions. 5 63%
F4 Tracking over a longer distance. 4 50%
F5 Frequently changing target group’s shape. 3 38%

Table 1. Top factors that increase the difficulty of tracking a group of
moving objects reported by the pilot study users.

The first finding suggests that the objects (no matter static or
moving) belonging to the same group should be placed close
to each other to visually enhance their relationships. The
second principle indicates providing visual cues to highlight
moving objects’ groups is helpful for object tracking.

We designed bundled trajectories (Fig. 1) to incorporate the
above design suggestions. More precisely, we used bundled
trajectories to smoothly aggregate a group of objects together
during an animation, while keeping their initial and final
locations unchanged. Such curved trajectories also provide
visual cues of objects’ group information. The third finding
indicates that our design of using curved trajectories could be
harmless for object tracking tasks.

We implemented the above design by using B-splines to rep-
resent the movement trajectories of a group of objects, which
ensures the continuity of the movements. We computed three
control points to bundle the splines together. As shown in
Fig. 1, these control points are the mean locations of (1) the
moving objects’ initial positions, (2) the midpoints of their
straight movement trajectories, and (3) their final positions.
Based on these control points, we separated the transition
into three stages: the merging, translating, and splitting of the
group of objects. Intuitively, when compared with straight
trajectories (dash lines in Fig. 1), bundled trajectories reduce
moving collisions between different groups of objects, and
show transition trends more clearly.

PILOT STUDY
We conducted a pilot study (8 participants) to identify factors
that affect the difficulty of tracking moving objects and to col-
lect users’ feedback on our initial trajectory bundling design.
During the study, we randomly generated 16 groups of 3–8
objects on a 2D plane. We ensured the objects in the same
group to be closely located and move in similar directions.
We showed the objects’ movements to our users with either
straight or bundled trajectories. We then asked the users to
track a selected group of 3 or 6 targets during the animations.

This study helped us to find (1) the key factors that influence
users’ performance of tracking a group of moving objects
and (2) the potential limitation of the proposed technique.
Particularly, our pilot users commonly raised five factors
as summarized in Table 1, which remarkably increased the
tracking difficulty. Based on these factors, we designed a
controlled study to evaluate the trajectory bundling technique
under different complexity conditions. Also, most users felt
the third stage (“splitting”) was distracting and difficult to
track. To reduce this limitation, we employed the “slow-in,
slow-out” strategy in our formal study, to schedule more time
for the merging and splitting stages.

STUDY DESIGN RATIONALES
In this paper, we largely borrowed the study methodologies
introduced in [5, 6], since we believe the methodologies are
not our focus and that reusing the state-of-the-art methods
will ensure the accuracy of our experiment. However, it is
nontrivial to fit those study methodologies into our problem.
Many considerations have been made which will be discussed
in this section, including our choices of task, test, testing
environment, and complexity metrics of difficulty factors.
Particularly, when compared with [5, 6], we defined a set of
new complexity metrics to capture the features of a group of
moving objects instead of individual ones.

Choice of Task
We focused on evaluating the effectiveness of our trajectory
bundling technique at a low perceptual level. Similar with
previous studies on animated transitions [5, 6], we chose
to use visual tracking tasks that require following a set of
moving objects (targets), while ignoring other moving objects
(distractors). This type of task is fundamental in animated
transitions, since high-level tasks are considered to be equiv-
alent to it, or highly depending on it, as discussed in [6].

Choice of Test
Our study focused on tracking a set of moving objects without
identity, which is one type of MOT tasks [5]. At the end
of such tasks, to judge the tracking accuracy, participants
have to “select all/some” (i.e., select the final locations of
all targets [5, 17, 25] or some of the targets [10]), or “probe
one” (i.e., indicate if a particular object belongs to the target
set [9, 11, 26, 30]), which are two main types of tests.

From the pilot study, we found the first test type does not fit
our experiment. In our study, participants had to track up to 6
targets, where selecting all or some of the targets by using
a mouse to click on each target dot was tedious and time
consuming. Some pilot users complained that they forgot the
answers during the selection since it cost too much time.

To avoid this problem, we borrowed the design of the “probe
one” test. Particularly, we provided four sets of objects
as candidate choices. Participants can review the choices
by pressing the space key and make a selection by press-
ing the enter key; thus avoided inefficient mouse operations
and ensured a quick selection. The four choices consisted
of one correct answer and three distractors. We generated
the distractors by randomly replacing one-third (i.e., 1 for
3-target tasks, 2 for 6-target tasks) of the targets in the correct
answer with their nearest neighbors in the final frame. We
conducted a series of tests with users after the pilot study to
determine the proper replacing ratio that ensured a moderate
task difficulty. Similar with the “probe one” test, in our
design, the tracking accuracy of a test is 1 if the correct
answer is selected, and 0 otherwise.

Choice of Testing Environment
To ensure participants focus on objects’ movements in the
study, we represented the objects as visually identical dots
with the same shape, color, and size. This avoided the
distraction of perceptual visual features, such as pre-attentive
colors and shapes.



P the set of data points in a dataset
G ⊂ P a set of targets
p, q ∈ P two data points
T the set of sampled time points in an animation
t ∈ T a time point
d (p, q, t) the distance between p and q at time t
δ the duration of a frame
r the radius of a dot

Table 2. Notations used in the definition of the complexity metrics.

Also, we kept the dots relatively small to reduce occlusions
during the movements. Here, we chose to control the size
of the dots instead of the size of the displaying window for
two reasons: (1) the window size should be fixed to ensure a
precise control of movement distance, which is a key factor
that influences tracking performance [10], and (2) reducing
the size of visual items to reduce visual clutter is a common
strategy that has been used in many visualization designs
with high-density displays, such as node-link diagrams and
multidimensional projections.

Finally, we conducted our study with a regular sized (15.4
inches) laptop instead of a big screen because the magni-
fication changes of the display only have minor impact on
people’s object tracking performance [11].

Choice of Complexity Metrics
To better understand how the proposed trajectory bundling
technique affects users’ performance of tracking multiple
moving objects under different conditions (such as different
trajectory lengths or target numbers), we defined a set of
complexity metrics (occlusion, dispersion, and deformation)
based on the pilot study results for quantitatively measuring
the complexity of these conditions. When compared with the
existing metrics introduced in [5, 6], our new metrics focus
on capturing group features of a set of related moving objects
instead of the features of individual ones.

Metrics Definition
Based on the notations described in Table 2, we define our
complexity metrics as follows. An illustration of these met-
rics is shown in Fig. 2.

Occlusion. Previous studies show that tracking accuracy is
impaired when targets occlude with distractors [1, 9]. To
measure the crowding between targets and distractors (i.e.,
how often targets occlude with distractors), we define a target
crowding metric to capture the number of occlusions between
targets and distractors during an animated transition:

occlude(G) =
1

|T |
∑
t∈T

∑
p∈G,q/∈G overlap(p, q, t)

|G|(|P | − |G|)
(1)

where overlap(p, q, t) is a binary function that determines
whether p overlaps with q at time t. It returns 1 when an
overlap occurs (d(p, q, t) ≤ 2r); otherwise, it returns 0. |G|
is the number of targets, and (|P | − |G|) is the number of
distractors outside the target set. |G|(|P | − |G|) normalizes
the overall occlusions between targets and distractors at any
given time t, and thus ensures the metric scores to be inde-
pendent of the number of targets. At last, we compute the
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Figure 2. Illustration of the complexity metrics.

mean across all time points during an animation, as the final
score of the occlusion metric.

Dispersion. Animation design guidelines proposed by Heer
and Robertson [14] suggest grouping similar transitions to
help viewers apprehend elements undergoing the same opera-
tion. Also, Gestalt’s proximity principle [19] reveals that ob-
jects near to each other are often perceived as a group. These
were supported by our pilot study results. To measure the
proximity of targets (i.e., how close they are to each other),
we define a target dispersion metric to capture the pairwise
distances of the target set during an animated transition:

disperse (G) =
1

|T |
∑
t∈T

∑
pi,pj∈G,i<j d (pi, pj , t)(|G|

2

) (2)

where |G| is the number of targets, and
(|G|

2

)
is the number

of 2-combinations of the target set G.
(|G|

2

)
normalizes the

overall dispersion at any given time t, to make the metric
scores independent of the number of targets. Finally, we
compute the mean across all time points of an animation, as
the final score of the dispersion metric.

Deformation. Previous work demonstrates that people’s
tracking accuracy is improved when targets’ virtual shape
remains constant [30]. To measure the change in targets’
virtual shape (i.e., the difference of the targets’ pairwise
distance between two consecutive frames), we employed the
metric definition proposed by [5], which captures all seg-
ments changes of the structure of a group of dots:

deform (G) =

1

|T |
∑
t∈T

∑
pi,pj∈G,i<j |d (pi, pj , t)− d (pi, pj , t− δ)|(|G|

2

) (3)

where |G| is the number of targets, and
(|G|

2

)
is the number

of 2-combination of the set of targets G.
(|G|

2

)
normalizes the

overall deformation between any given time t and t − δ (δ is
the duration of a frame), and thus ensures the metric scores
are not influenced by the amount of targets. In the end, we
compute the mean across all time points of an animation, as
the final score of the deformation metric.



Analysis and Discussion
Based on the above definitions, we analyzed the indepen-
dence of the three complexity metrics via a correlation anal-
ysis, and explored the effect of bundled trajectories on the
metric scores, when compared with straight trajectories.

Independence analysis. To analyze the independence of
the proposed complexity metrics, we randomly generated
10,000 testing datasets. Each dataset contained 16 moving
groups, and each moving group consisted of 3–8 moving
objects. For each dataset, we randomly selected a set of
6 objects falling within the same group as the targets, and
used straight trajectories for the transitions of all the objects.
Based on these settings, we computed the scores of the three
complexity metrics for each testing dataset, yielding 10,000
scores per metric. We then used these scores to calculate the
Pearson correlation coefficients between each two metrics.
The analysis results were summarized in Table 3. It shows
that the proposed metrics were significantly independent of
each other (p-values < .001), which confirmed their capa-
bility of capturing different complexity aspects of animated
transitions with straight trajectories.

Metrics Correlation (r)
occlusion / dispersion -0.099
occlusion / deformation -0.093
dispersion / deformation 0.090

Table 3. The pairwise Pearson correlation coefficients between each of
the two complexity metrics. All have p-values less than .001.

Comparison of techniques. We compared straight and bun-
dled trajectories based on the aforementioned complexity
metrics, to see how bundled trajectories affect the scores of
different metrics. To achieve this goal, we computed another
set of complexity scores using bundled trajectories on the
above generated testing datasets. We drew these two sets of
scores (straight, bundled) in three scatter plots, one for each
metric (Fig. 3). There are a total of 10,000 dots in each scatter
plot, where each dot represents a testing dataset and its x and
y coordinates represent the scores computed using straight
and bundled trajectories, respectively. A lower score indicates
a lower complexity.

In Fig. 3, we found that overall bundled trajectories reduced
the occlusion and dispersion scores, and thus reduced the
complexity of animated transitions from these two aspects.
However, bundled trajectories increased the deformation
scores, which was a reasonable finding, since curves have a
higher deformation on average than straight lines. In order
to further examine the theoretical results in practice, we
designed a user study to compare the straight and bundled
trajectories, and investigate the benefits and limitations of the
trajectory bundling technique.

USER STUDY
Based on the aforementioned study design rationales, in this
section, we introduce a controlled user study designed for
two purposes: (1) to evaluate if the task complexity scores
computed based on the three metrics are consistent with
task difficulty perceived by users, and (2) to compare the
effectiveness between straight and bundled trajectories.
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Figure 3. The comparison on computed scores between straight and
bundled trajectories under each complexity metric. Predictor functions
are annotated, with p-values less than .001. The dashed diagonal lines
represent the equivalence of the complexity scores computed using each
of the two types of trajectories. The solid lines are the linear regression
results. The orange and blue areas show the decreasing and increasing
of complexity scores when using bundled trajectories.

Participants and Apparatus
We recruited 16 volunteers (6 female) to participate in our
study for comparing the two distinct techniques: animated
transitions of moving objects with straight and bundled tra-
jectories. All of the participants had normal vision, and were
graduate students studying computer science. Their ages
ranged from 23 to 33 (mean 27, SD = 3.16).

The study was performed on a laptop computer with a 15.4-
inch display of resolution 1440×900 pixels and 60 Hz refresh
rate. Dots were displayed as circles of 9 pixels (0.2 cm) in
radius, filled with black color. The animation window was
630×630 pixels (16.8×16.8 cm) in dimension, with a white
background. Participants sat 55 cm from the display.

Procedure
At the beginning, we introduced the study to the participants
and showed them example animations of two types of tasks:
(1) tracking 3 targets moving along straight and bundled
trajectories with the length of 0.5 units1 and 0.8 units, and (2)
tracking 3 and 6 targets moving along straight and bundled
trajectories with the length of 0.5 units. These examples
helped the participants to get familiar with our study tasks and
gain some intuitions about the effect of the trajectory length
and the number of targets.

Next, we gave the participants a brief lesson to teach them
about using our study system to complete object tracking
tasks. Particularly, in each task, users were first showed a
set of dots among which targets were highlighted in red and
distractors were in black. After memorizing the targets, users
had to press the space key to play the animation of a study
trial. Half a second before the animation started, the targets
changed to black to avoid the distractions of colors. During
the animation, users were asked to track the movements of the
target dots. When the animation finished, users had to select
the final locations of all targets based on four given choices,
by pressing the space key to review the choices rotationally
and pressing the enter key to make the selection.

Before the formal study, we asked the participants to finish
8 practice tasks using both techniques. Each of these tasks
was at different complexity levels and had different trajectory
lengths and different numbers of targets. These practice
1The width of the square animation window is defined as 1 unit.



tasks were designed to help users get familiar with different
task complexities. We encouraged the participants to ask
questions during the practice and provided them with the
solutions of the practice task to ensure all participants fully
understood the tasks and the two types of trajectories.

After the above preparation, we conducted the formal study.
In the study, we fully randomized the order of the tasks
and counterbalanced the order of using straight and bundled
trajectories. For a given task, we used the same dataset with
both types of trajectories to ensure a fair comparison. To
avoid learning effect, we mirrored and rotated a dataset before
reusing it. This approach ensured that for each of the two
trajectory types in a task, the participants were tracking the
same set of targets using the same dataset, but were unable to
memorize the correct answer.

The tracking accuracy was recorded after each trial. After the
study, the participants completed a post-study questionnaire
to provide their subjective assessment of the difficulty of
tasks of different factors (i.e., trajectory type, path length,
and target number). We also conducted a brief informal
interview to collect feedback from them. The whole study
took approximately one hour per participant, during which
the participant can take a break when needed.

Experimental Design and Task Generation
We employed a full-factorial within-subjects study in which
each participant had to perform the following 96 study tasks
twice, once for each of the two tested trajectory designs (two
study blocks), yielding 3,072 (16×96×2) trials in total.

As summarized in Table 4, the three independent variables
that we considered in our task design were: (1) trajectory
length (0.5 units or 0.8 units), (2) target number (3 or 6), and
(3) task complexity (3 metrics × 2 levels).

2 Trajectory Length (0.5, 0.8)
× 2 Target Number (3, 6)
× 2 Occlusion (Low, High)
× 2 Deformation (Low, High)
× 2 Dispersion (Low, High)
× 3 repetitions

96 tasks
Table 4. The design of study tasks.

We generated the above tasks in two steps. We first randomly
computed a large number of transition datasets. Based on
these datasets, we then selected the ones satisfying certain
complexity requirements (e.g., low occlusion, high disper-
sion, and low deformation), as a task data used in the study.

Task data generation. We randomly generated 200,000 tran-
sition datasets, half of which (100,000 sets) used trajectories
of 0.5 units in length and the other half used trajectories of 0.8
units in length (straight-line distance). Each dataset contained
80 moving objects represented as dots with a fixed radius of
0.014 units. We ensured that: (1) no dot overlapping existed
at the initial and final frames, to avoid unnecessary confusions
in users’ target memorizing and answer selecting, and (2) all
transitions had an equal straight-line length, to ensure objects’
movements stop at the same time.

To generate data for tasks with different number of targets,
we computed transition groups for each dataset, i.e., identi-
fying groups of moving objects in which objects are close
to each other at the initial frame and share similar moving
directions. To achieve this goal, we extracted a feature vector
(xs, ys, xt, yt) for each moving object, where (xs, ys) and
(xt, yt) represent the x and y coordinates of the object’s
initial and final locations, respectively. This feature vector
captured both the direction and location features of moving
objects. We then used the K-means clustering algorithm to
identify groups of objects (i.e., moving groups) based on this
feature vector. In the implementation, we set K = 16 to
make each group contain 5 objects on average. Finally, in
each dataset, we randomly selected a group with exactly 3 or
6 objects as the target group of a study task.

Task selection. We selected the datasets used for study
tasks from the randomly generated datasets by considering
their complexity conditions. First, we computed three met-
ric scores (occlusion, dispersion, and deformation) for each
dataset and categorized each dataset into one of three com-
plexity levels (High, Medium, and Low) based on its metric
scores. Then, we sorted these datasets by the score of each
metric in a descending order, yielding three ranking lists. In
each list, for example, the one computed based on occlusion
scores, we considered the first one third datasets as the “High”
occlusion (labeled as H), the last one third as the “Low”
occlusion (labeled as L), and the rest as the “Medium” oc-
clusion (labeled as M). Thus, the datasets can be marked by
these complexity notations. For example, the notation LMH
represents the subset of the datasets of low occlusion, medium
dispersion, and high deformation.

To obtain more sensitive results in the study, we removed
datasets with M labels, and kept those with one of the follow-
ing eight (23) complexity notations: LLL, HLL, LHL, LLH,
HHL, HLH, LHH and HHH. For the study tasks, we randomly
selected task data that satisfied this complexity requirement
from the random datasets.

Task duration. Objects’ moving speed is one key factor for
people’s tracking performance in MOT tasks [1, 9, 26]. To
ensure a fair comparison, we chose to control objects’ average
moving speed in this study, i.e., 0.5 units per second for both
types of trajectories. For transitions with straight trajectories,
the durations were 1000 ms (0.5 units) and 1600 ms (0.8
units). For transitions with bundled trajectories, we set the
durations based on the average curve length of the target
dots to guarantee all dots move synchronously. The average
curve lengths of 0.5 and 0.8 units (straight distance) were 0.64
(SD = 0.07) and 0.91 (SD = 0.06) units; thus the durations
were 1280 ms and 1820 ms. Finally, we employed the
“slow-in, slow-out” on both straight and bundled transitions,
which did not affect the duration or the average speed.

Note that the duration of transitions with bundled trajectories
was longer than those with straight trajectories. This may
potentially bias the experiment results towards bundled tra-
jectories. Studies that control the duration to be equal for
both types of trajectories were left as future work.



Hypotheses
We made the following hypotheses to test in the study:

H1 For both straight and bundled trajectories, low complexity
tasks in general have higher accuracy than high complexity
tasks in terms of the three complexity metrics (occlusion,
dispersion, and deformation), with the exception that low
deformation may not be associated with high accuracy for
bundled trajectories.

H2 When the number of targets increases, tracking using bun-
dled trajectories has higher accuracy than using straight
trajectories.

H3 When the trajectory length increases, tracking using bun-
dled trajectories has higher accuracy than using straight
trajectories.

H4 When task complexity increases in terms of complexity
metrics (occlusion, dispersion, and deformation), tracking
using bundled trajectories has higher accuracy than using
straight trajectories.

Among these hypotheses, H1 was made based on the design
of our complexity metrics, and the observation that straight
trajectories were significant predictors of bundled trajectories
in terms of the metric scores (Fig. 3). We expected to have
the exception in H1, since bundled trajectories increased the
overall deformation in object tracking tasks (Fig. 3c). H2 and
H3 were based on users’ feedback from the pilot study, and
H4 was based on the fact that bundled trajectories reduced
the overall occlusion and dispersion in object tracking tasks
(Fig. 3a,b). We expected the deformation metric to be discon-
firmed in H4, for the same reason as in H1.

Study Results
In this section, we describe the results of the above study.
First, we validate our three complexity metrics (occlusion,
dispersion, and deformation) by analyzing their correlations
with users’ tracking accuracy. Then, we compare straight and
bundled trajectories based on the tracking accuracy of tasks
with either of these two types of trajectories.

Validation of Complexity Metrics
Fig. 4 shows the mean accuracies of tasks with straight (a)
and bundled (b) trajectories for each complexity level (low,
high) in each metric (occlusion, dispersion, and deformation).
Repeated Measures ANOVA was employed to compare the
difference in mean accuracy between low and high complex-
ity levels of each metric. Results of the ANOVA tests are
annotated on the figure (significant ones at the .05 levels are
highlighted with a white background).

We found significant differences in all metrics for both
straight and bundled trajectories (except for deformation with
bundled trajectories as we expected). Specifically, for each
metric, tasks where that metric was low had significantly
higher accuracy than tasks where that metric was high.
This finding was consistent with H1 and showed that our
complexity metrics were highly correlated with the accuracy
of the tasks. Therefore, these metrics reflected tasks’ actual
difficulty perceived by the participants.
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Figure 4. The mean tracking accuracies of tasks with straight (a) and
bundled (b) trajectories, when each complexity metric (one per row) was
low or high. Error bars are 95% confidence intervals (CIs).

Comparison between Straight and Bundled Trajectories
Fig. 5 shows the mean accuracies of 3-target tasks (a) and
6-target tasks (b), with either straight or bundled trajectories,
when each complexity metric score was low or high. We
conducted Repeated Measures ANOVA tests to compare the
mean accuracy between tasks with straight and bundled tra-
jectories, at each level of each metric. Test results are labeled
in the figure with significant ones in a white background.

We found that the overall mean accuracy of 6-target tasks
with bundled trajectories was significantly higher than with
straight trajectories, which supported H2. Also, within 6-
target tasks, for occlusion and deformation metrics, we ob-
served that the difference of the mean accuracy between
bundled trajectory tasks and straight trajectory tasks became
larger and significant in high complexity levels, which par-
tially supported H4. Surprisingly, this effect was not found in
dispersion metric, which was not supporting H4.

In Fig. 6, the mean accuracies of tasks with 0.5 units (a) and
0.8 units (b) trajectories are presented, with either straight
or bundled trajectories for every condition of the three com-
plexity metrics. Repeated Measures ANOVA was conducted
to compare the mean accuracy between tasks with straight
and bundled trajectories, at each level of each metric (see test
results labeled on the figure).

In general, tasks with bundled trajectories had higher accu-
racy than with straight trajectories, although there was no
significant effect for comparing the overall accuracy (Fig. 6).
However, significant effect was found in low and high de-
formation, and low dispersion conditions for 0.8 units length
tasks. Moreover, for 0.8 units length tasks, when the oc-
clusion and deformation complexities became higher, the
accuracy of tasks with bundled trajectories became better than
tasks with straight trajectories, which partially supported H4.
Again, this effect was not found in dispersion metric, possibly
for the same reason as discussed above.

From Fig. 5a and Fig. 6a, we found that the task accuracy
difference between the straight and bundled trajectories tech-
niques did not indicate a trend of increasing or decreasing
when the complexities became higher, which seemed not
supporting H4. However, these results were aligned with
our hypotheses in H2 and H3, where the benefits of bundled
trajectories would be more obvious when tracking a larger
number of targets in longer movement paths. Future studies
are warranted to investigate these factors deeper with more
levels of target numbers and trajectory lengths.
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Figure 5. The mean tracking accuracies of 3-target tasks (a) and
6-target tasks (b) with either straight or bundled trajectories, when each
complexity metric was low or high. Error bars are 95% CIs.

Questionnaire
Our study questionnaire contained eight questions to which
the participants responded on a 5-point Likert scale (1=very
easy, 5=very difficult). These questions compared the subjec-
tive difficulty between tasks with straight and bundled trajec-
tories. Specifically, the comparison was based on tasks with
3 targets (Q1,Q2), 6 targets (Q3,Q4), 0.5 units trajectories
(Q5,Q6), and 0.8 units trajectories (Q7,Q8). The results are
shown in Fig. 7.

On average, the participants found tasks with 3 targets were
easier than with 6 targets, and tasks with 0.5 units trajec-
tories were easier than with 0.8 units trajectories. These
differences were found in tasks with both straight trajectories
and bundled trajectories. Comparing straight and bundled
trajectories, on average, the participants found for tasks with
6 targets or with 0.8 units trajectories, bundled trajectories
were easier to track than straight trajectories. However,
for tasks with 3 targets or with 0.5 units trajectories, the
participants’ assessments of difficulty for the two types of
trajectories were nearly the same.

DISCUSSION
In this section, we first introduce our findings in users’ track-
ing strategies at each stage of animated transitions with bun-
dled trajectories. Then, based on these findings, we explain
the experiment results, and discuss the design implications.

Object Tracking Strategies
In our informal interviews after the study, we showed Fig. 1 to
the users and asked them to describe their tracking strategies
at each of the three transition stages (merging, translation, and
splitting) when using bundled trajectories. We summarized
the reported tracking strategies based on the transition stages.

Merging stage. At this stage, objects within a group move
towards the first control point and are increasingly merged
together. The most popular tracking strategy at this stage was
“track one”, i.e., following only one target, and then retriev-
ing other targets after they become merged. This strategy
reveals that at the merging stage, the movements of objects
within a group are consistent and highly predictable; thus
only one target has to be precisely tracked, based on which the
locations of the rest can be inferred. This finding implies at
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Figure 6. The mean tracking accuracies of 0.5 units trajectory (a) and
0.8 units trajectory (b) tasks, with either straight or bundled trajectories,
when each complexity metric was low or high. Error bars are 95% CIs.

this stage, the occlusions between the targets and distractors,
and the deformation of the target group have minor influence
on users’ tracking accuracy. Moreover, the converging trajec-
tories also reduce the dispersion of the target group, which
has a tendency to improve users’ tracking accuracy.

Translation stage. At this stage, objects of a group are tightly
bundled together and move in a uniform direction. Users
commonly developed a “grouping” strategy at this stage, i.e.,
perceiving and tracking the entire group of multiple objects
as one single virtual object. This “grouping” strategy helped
reduce the tracking difficulty as reported by our users, and
can improve people’s tracking accuracy as found in [30].
Moreover, at this stage, since objects within each group were
tightly bundled, occlusions between targets and distractors
are likely to be reduced, and the dispersion and deformation
will also be minimized, thus making it a stage at which
moving objects are the easiest to track.

Splitting stage. At this stage, grouped moving objects spread
out to different final locations. The users had to track each
one of the targets separately, i.e., using a “track all” strategy.
During the splitting stage, dispersion and deformation are
both increased, and occlusions between targets and distrac-
tors would cause more impairment since each target has to be
followed precisely. These together make it the most difficult
stage for object tracking, as declared by the users.
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Exploratory Analysis of Experiment Results
Based on the experiment results and the users’ subjective
feedback, we found both advantages and limitations of the
proposed trajectory bundling technique. In general, bundled
trajectories can help users to:

A1 Track more moving objects at a time. From the ex-
periment, we found that for tasks of tracking 6 targets,
using bundled trajectories has a significantly higher overall
accuracy than using straight trajectories (Fig. 5b). In the
questionnaires, users’ subjective assessment of task diffi-
culty also supported this finding (Q3,Q4 in Fig. 7). This
benefit could come from the “track one” and “grouping”
strategies used in the first two transition stages as discussed
above. These two strategies allowed users to only track one
moving object (either real or virtual), and thus significantly
reduced the tracking difficulty. It implies that at the first
two stages of transitions with bundled trajectories, increas-
ing the number of targets only results in minor impairment
on users’ tracking performance. On the contrary, when
using straight trajectories, more objects to track increases
the chance of losing targets.

A2 Track moving objects with higher occlusion. In the
experiment results, we found that in high occlusion con-
dition, the accuracy of tasks with bundled trajectories was
higher than with straight trajectories, and this improvement
was significant in 6-target tasks (Fig. 5b). One possible
reason is that bundled trajectories can reduce the over-
all occlusions in object tracking tasks (Fig. 3a), whereas
high occlusion increases the chance of losing targets dur-
ing straight-line movement transitions. Another potential
reason is that, by using the “track one” and “grouping”
strategies with bundled trajectories, occlusions during the
merging and translation stages have less impairment on
users’ tracking performance, as discussed above.

A3 Track moving objects with higher deformation. From
the study results, we found that (1) the tracking accuracy
of tasks with bundled trajectories was nearly not impaired
by high deformation (Fig. 4b), and (2) in high deformation
condition, the accuracy of tasks with bundled trajectories
was higher than with straight trajectories, and this im-
provement was significant in tasks with 6 targets (Fig. 5b)
and tasks with 0.8 units trajectories (Fig. 6b). These two
findings could be explained by the fact that although high
deformation impairs tracking performance at the splitting
stage of transitions with bundled trajectories, it has mi-
nor influence at the merging and translation stages. The
finding (2) implies that this advantage is more remarkable
when tracking more objects in long-distance transitions.

From the users’ feedback in our informal interviews after
the study, we found the major limitation of the trajectory
bundling technique was caused by its splitting stage, dur-
ing which individual targets have to be followed precisely.
Specifically, the experiment results indicate that the trajectory
bundling technique is less effective in two situations:

L1 Less effective in simple object tracking tasks. In our
study, a task is considered to be simple if it satisfies any

of the three criteria as follows: (1) the number of targets is
small (i.e., 3-target tasks), (2) the trajectory length is short
(i.e., 0.5 units trajectory tasks), or (3) any of its complexity
metrics (occlusion, dispersion, and deformation) has a low
score. The experiment results show simple tasks with
straight trajectories achieved similar or higher accuracies
than those with bundled trajectories, with only one excep-
tion for low dispersion (Fig. 5, Fig. 6). Particularly, straight
trajectories significantly outperformed bundled trajectories
in 3-target tasks under low occlusion or low deformation
condition, and in 0.8 units trajectory tasks under low de-
formation condition. One explanation is that in the simple
tasks, the impairment of the splitting stage outweighed the
benefit of the merging and translation stage. This finding
indicates the bundling technique is less effective, or even
harmful, when the object tracking tasks are too simple.

L2 Less effective in high dispersion condition. Before the
study, we hypothesized that in high complexity condi-
tions, tasks with bundled trajectories would have higher
accuracy than with straight trajectories (H4). However,
the study results for the dispersion metric disconfirmed
this hypothesis: bundled trajectories outperformed straight
trajectories in low but not in high dispersion tasks (Fig. 5b,
Fig. 6b). This could be explained by the observation that
high dispersion tended to make the targets more separate
at the final frame; thus intensified the weakness of the
splitting stage. This finding suggests that in object tracking
tasks, the trajectory bundling technique is more helpful
when targets are closely distributed in the final frame and
is less effective when targets are widely separated.

CONCLUSION AND FUTURE WORK
We have presented a novel trajectory bundling technique to
facilitate tracking moving objects in animated transitions.
Specifically, movement trajectories are “bundled” for a group
of objects that are close in spatial locations and share similar
moving directions. We have described a comprehensive con-
trolled experiment to examine the effect of bundled trajecto-
ries by decomposing the complexity of object tracking tasks
into different aspects. The experiment results indicate the ef-
fectiveness of using bundled trajectories when tracking more
targets (six vs. three targets) or when the object movement
involves a high degree of occlusion or deformation. Based on
the results, we have discussed the strengths and weaknesses
of our technique, and outlined design implications for gen-
erating movement trajectories to effectively track a group of
objects in animated transitions.

Since our study is an initial work in InfoVis and HCI areas
to propose and study bundled trajectories in animated tran-
sitions, there are a number of promising future directions to
pursue. Particularly, our future work will include: (1) study of
bundled trajectories in MOT tasks where moving objects have
identities; (2) comparison of straight and bundled trajectories
when the animation duration is controlled; (3) comparison
of the trajectory bundling technique with other visual tech-
niques that help to perceive group information in animated
transitions; (4) study of the effect of “slow-in, slow-out” on
object tracking with bundled trajectories.
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